Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-s8fcc Total loading time: 0.484 Render date: 2022-12-05T18:28:02.663Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The improvement of parturition duration by high intake of dietary fibre in late gestation is associated with gut microbiota and metabolome in sows

Published online by Cambridge University Press:  14 February 2022

Yang Liu
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Pingping Jiang
Affiliation:
School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
Nan Chen
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Yannan Jiang
Affiliation:
School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
Ruinan Zhang
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Zhengfeng Fang
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Yan Lin
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Shengyu Xu
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Bin Feng
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Yong Zhuo
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
De Wu
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
Peter Kappel Theil
Affiliation:
Department of Animal Science, Aarhus University, Tjele, Denmark
Lianqiang Che*
Affiliation:
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
*
*Corresponding author: Lianqiang Che, email che.lianqiang@sicau.edu.cn

Abstract

Prolonged parturition duration has been widely demonstrated to be a risk factor for incidence of stillbirth. This study evaluated the supply of dietary fibre on the parturition duration, gut microbiota and metabolome using sows as a model. A total of 40 Yorkshire sows were randomly given diet containing normal level of dietary fibre (NDF, 17·5 % dietary fibre) or high level of dietary fibre (HDF, 33·5 % dietary fibre). Faecal microbiota profiled with 16S rRNA amplicon sequencing, SCFA and metabolome in the faeces and plasma around parturition were compared between the dietary groups. Correlation analysis was conducted to further explore the potential associations between specific bacterial taxa and metabolites. Results showed that HDF diet significantly improved the parturition process as presented by the shorter parturition duration. HDF diet increased the abundance of the phyla Bacteroidetes and Synergistetes and multiple genera. Except for butyrate, SCFA levels in the faeces and plasma of sows at parturition were elevated in HDF group. The abundances of fifteen and twelve metabolites in the faeces and plasma, respectively, markedly differ between HDF and NDF sows. These metabolites are involved in energy metabolism and bacterial metabolism. Correlation analysis also showed associations between specific bacteria taxa and metabolites. Collectively, our study indicates that the improvement of parturition duration by high fibre intake in late gestation is associated with gut microbiota, production of SCFA and other metabolites, potentially serving for energy metabolism.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Oliviero, C, Heinonen, M, Valros, A, et al. (2010) Environmental and sow-related factors affecting the duration of farrowing. Anim Reprod Sci 119, 8591.CrossRefGoogle ScholarPubMed
Dijk, AJV, Rens, BTTM, Lende, TVD, et al. (2005) Factors affecting duration of the expulsive stage of parturition and piglet birth intervals in sows with uncomplicated, spontaneous farrowings. Theriogenology 64, 15731590.CrossRefGoogle ScholarPubMed
Gourley, KM, Swanson, AJ, Royall, RQ, et al. (2020) Effects of timing and size of meals prior to farrowing on sow and litter performance. Transl Anim Sci 4, 66.CrossRefGoogle ScholarPubMed
Leenhouwers, JI, Lende, TVD & Knol, EF (1999) Analysis of stillbirth in different lines of pig. Livest Prod Sci 57, 243253.CrossRefGoogle Scholar
Wang, YS, Zhou, P, Liu, H, et al. (2016) Effects of inulin supplementation in low- or high-fat diets on reproductive performance of sows and antioxidant defence capacity in sows and offspring. Reprod Domest Anim 51, 492500.CrossRefGoogle ScholarPubMed
Guillemet, R, Hamard, A, Quesnel, H, et al. (2007) Dietary fibre for gestating sows: effects on parturition progress, behaviour, litter and sow performance. Animal 1, 872880.CrossRefGoogle ScholarPubMed
Koh, A, Vadder, FD, Kovatcheva, P, et al. (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 13321345.CrossRefGoogle ScholarPubMed
Hussain, SK, Dong, TS, Agopian, V, et al. (2020) Dietary protein, fiber and coffee are associated with small intestine microbiome composition and diversity in patients with liver cirrhosis. Nutrients 12, 1395.CrossRefGoogle ScholarPubMed
Mathilde, LS, Etienne, L, Olivier, Z, et al. (2018) Effect of dietary fiber content on nutrient digestibility and fecal microbiota composition in growing-finishing pigs. PLOS ONE 13, e206159.Google Scholar
Kumar, J, Rani, K & Datt, C (2020) Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 47, 62296237.CrossRefGoogle ScholarPubMed
Tan, FPY, Beltranena, E & Zijlstra, RT (2021) Resistant starch: implications of dietary inclusion on gut health and growth in pigs: a review. J Anim Sci Biotechnol 12, 124.CrossRefGoogle ScholarPubMed
Schönfeld, P & Wojtczak, L (2016) Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57, 943954.CrossRefGoogle Scholar
Serena, A, Jørgensen, H & Knudsen, KEB (2009) Absorption of carbohydrate-derived nutrients in sows as influenced by types and contents of dietary fiber. J Anim Sci 87, 136147.CrossRefGoogle ScholarPubMed
Feyera, T, Pedersen, TF, Theil, PK, et al. (2018) Impact of sow energy status during farrowing on farrowing kinetics, frequency of stillborn piglets and farrowing assistance. J Anim Sci 96, 23202331.CrossRefGoogle ScholarPubMed
Che, L, Hu, L, Zhou, Q, et al. (2019) Microbial insight into dietary protein source affects intestinal function of pigs with intrauterine growth retardation. Eur J Nutr 59, 327344.CrossRefGoogle ScholarPubMed
Liu, Y, Chen, N, Che, L, et al. (2020) Effects of dietary soluble or insoluble fiber intake in late gestation on litter performance, milk composition, immune function, and redox status of sows around parturition. J Anim Sci 98, 17.CrossRefGoogle ScholarPubMed
Langendijk, P & Plush, K (2019) Parturition and its relationship with stillbirths and asphyxiated piglets. Animal 9, 885.CrossRefGoogle ScholarPubMed
Li, H, Liu, Z, Lyu, H, et al. (2020) Effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. Anim Reprod Sci 219, 106531.CrossRefGoogle ScholarPubMed
Jrg, C, Matthews, SG, Gibb, W, et al. (2000) Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 21, 514.Google Scholar
Liu, Y, Zhou, Q, Theil, PK, et al. (2021) The differences in energy metabolism and redox status between sows with short and long farrowing duration. Animal 15, 100355.CrossRefGoogle Scholar
Feyera, T, Skovmose, SJW, Theil, PK, et al. (2021) Optimal feed level during the transition period to achieve faster farrowing and high colostrum yield in sows. J Anim Sci 2, 111.Google Scholar
Oliveira, RA, Neves, JS, Castro, DS, et al. (2020) Supplying sows energy on the expected day of farrowing improves farrowing kinetics and newborn piglet performance in the first 24 h after birth. Animal 14, 22712276.CrossRefGoogle ScholarPubMed
Nielsen, SE, Feyera, T, Theil, PK, et al. (2021) Intravenous infusion of glucose improved farrowing performance of hyperprolific crossbred sows. J Anim Sci 5, 111.Google Scholar
Feyera, T, Højgaard, CK, Theil, PK, et al. (2017) Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. J Anim Sci 95, 54305438.CrossRefGoogle Scholar
Inoue, D, Tsujimoto, G & Kimura, I (2014) Regulation of energy homeostasis by GPR41. Front Endocrinol 5, 81.CrossRefGoogle ScholarPubMed
Gijs, DB, Karen, VE, Groen, AK, et al. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54, 23252340.Google Scholar
Besten, G, Lange, K, Havinga, R, et al. (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol-Gastr L 305, G900G910.Google Scholar
Tokach, MD, Menegat, MB, Gourley, KM, et al. (2019) Review: nutrient requirements of the modern high-producing lactating sow, with an emphasis on amino acid requirements. Animal 13, 29672977.CrossRefGoogle ScholarPubMed
Birkeland, E, Gharagozlian, S, Birkeland, KI, et al. (2020) Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr 59, 33253338.CrossRefGoogle ScholarPubMed
Igarashi, M, Morimoto, M, Suto, A, et al. (2020) Synthetic dietary inulin, Fuji FF, delays development of diet-induced obesity by improving gut microbiota profiles and increasing short-chain fatty acid production. PeerJ 8, e8893.CrossRefGoogle ScholarPubMed
Wang, JW, Qin, CF, He, T, et al. (2018) Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs. J Anim Sci Biotechnol 9, 11.CrossRefGoogle ScholarPubMed
Zhuo, Y, Feng, B, Xuan, Y, et al. (2020) Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J Anim Sci Biotechnol 11, 47.CrossRefGoogle ScholarPubMed
Ramos, AFO, Terry, SA, Holman, DB, et al. (2018) Tucumã oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay – concentrate diet. Front Microbiol 9, 1647.CrossRefGoogle ScholarPubMed
Schrama, JW, Heetkamp, MJ, Simmins, PH, et al. (2003) Dietary betaine supplementation affects energy metabolism of pigs. J Anim Sci 81, 12021209.CrossRefGoogle ScholarPubMed
Cools, A, Maes, D, Buyse, J, et al. (2010) Effect of N,N-dimethylglycine supplementation in parturition feed for sows on metabolism, nutrient digestibility and reproductive performance. Int J Animal Biosci 4, 20042011.CrossRefGoogle Scholar
Makki, K, Deehan, EC, Walter, J, et al. (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705715.CrossRefGoogle ScholarPubMed
Javitt, NB, Kok, E, Carubbi, F, et al. (1986) Bile acid synthesis. Metabolism of 3 beta-hydroxy-5-cholenoic acid in the hamster. J Biol Chem 261, 12486.CrossRefGoogle Scholar
Alberts, DS, Einspahr, JG, Earnest, DL, et al. (2003) Fecal bile acid concentrations in a subpopulation of the wheat bran fiber colon polyp trial. Cancer Epidemiol Biomarkers Prev 12, 197.Google Scholar
Reddy, BS, Engle, A, Simi, B, et al. (1992) Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology 102, 14751482.CrossRefGoogle ScholarPubMed
Ghaffarzadegan, T, Zhong, Y, Nyman, M, et al. (2017) Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 53, 104110.CrossRefGoogle ScholarPubMed
Ferrario, C, Statello, R, Carnevali, L, et al. (2017) How to feed the mammalian gut microbiota: bacterial and metabolic modulation by dietary fibers. Front Microbiol 8, 1749.CrossRefGoogle ScholarPubMed
Jae-Young, K, Min, KY, In-Sung, K, et al. (2018) Effects of the brown seaweed laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Front Nutr 5, 23.Google Scholar
Josephine, H, Nicolucci, AC, Heidi, V, et al. (2019) Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes. J Clin Endocr Metab 10, 44274440.Google Scholar
Pitta, DW, Pinchak, WE, Dowd, SE, et al. (2010) Rumen bacterial diversity dynamics associated with changing from Bermudagrass Hay to grazed winter wheat diets. Microb Ecol 59, 511522.CrossRefGoogle ScholarPubMed
Hee, EJ, Min-Sung, K, Tae, WW, et al. (2021) Alteration of gut microbiota after antibiotic exposure in finishing swine. Front Microbiol 12, 596002.Google Scholar
Peng, X, Wang, R, Hu, L, et al. (2019) Enterococcus faecium NCIMB 10415 administration improves the intestinal health and immunity in neonatal piglets infected by enterotoxigenic Escherichia coli K88. J Anim Sci Biotechnol 10, 72.CrossRefGoogle Scholar
Pan, X, Xue, F, Nan, X, et al. (2017) Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front Microbiol 8, 1818.CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Tables S1-S3

Download Liu et al. supplementary material(File)
File 24 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The improvement of parturition duration by high intake of dietary fibre in late gestation is associated with gut microbiota and metabolome in sows
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The improvement of parturition duration by high intake of dietary fibre in late gestation is associated with gut microbiota and metabolome in sows
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The improvement of parturition duration by high intake of dietary fibre in late gestation is associated with gut microbiota and metabolome in sows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *