Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-03-27T11:18:22.727Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effects of folic acid and riboflavin on growth performance, nutrient digestion and rumen fermentation in Angus bulls

Published online by Cambridge University Press:  28 February 2022

Cong Wang
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Jing Zhang
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Gang Guo
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Wenjie Huo
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Cheng Qiang Xia
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Lei Chen
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Yawei Zhang
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Caixia Pei
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
Qiang Liu*
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People’s Republic of China
*Corresponding author: Qiang Liu, email


This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.

Research Article
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Brosnan, ME, Macmillan, L, Stevens, JR, et al. (2015) Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? Biochem J 472, 135146.CrossRefGoogle ScholarPubMed
Girard, CL & Matte, JJ (2005) Folic acid and vitamin B12 requirements of dairy cows: a concept to be revised. Livest Prod Sci 98, 123133.CrossRefGoogle Scholar
NRC (2016) Nutrient Requirements of Dairy Cattle, 7th rev. ed. Washington, DC: NRC.Google Scholar
Santschi, DE, Berthiaume, R, Matte, JJ, et al. (2005) Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. J Dairy Sci 88, 20432054.CrossRefGoogle ScholarPubMed
Liu, YJ, Chen, JZ, Wang, DH, et al. (2021) Effects of guanidinoacetic acid and coated folic acid supplementation on growth performance, nutrient digestion and hepatic gene expression in Angus bulls. Brit J Nutr 126, 510517.CrossRefGoogle ScholarPubMed
Wang, C, Liu, C, Zhang, GW, et al. (2020) Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Brit J Nutr 123, 11091116.CrossRefGoogle ScholarPubMed
Duplessis, M, Girard, CL, Santschi, DE, et al. (2012) Folic acid and vitamin B12 supplement enhances energy metabolism of dairy cows in early lactation. J Dairy Sci 95, 118.Google Scholar
Graulet, B, Matte, JJ, Desrochers, A, et al. (2007) Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J Dairy Sci 90, 34423455.CrossRefGoogle ScholarPubMed
Bryant, MP & Robinson, IM (1961) Some nutritional requirements of the genus Ruminococcus . Appl Microbiol 9, 9195.CrossRefGoogle ScholarPubMed
Slyter, LL & Weaver, JM (1977) Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens . Appl Environ Microb 33, 363369.CrossRefGoogle ScholarPubMed
Wejdemar, K (1996) Some factors stimulating the growth of Butyrivibrio fibrisolvens TC33 in clarified rumen fluid. Swed J Agric Res 26, 1118.Google Scholar
Wang, C, Liu, Q, Guo, G, et al. (2016) Effects of rumen-protected folic acid on ruminal fermentation, microbial enzyme activity, cellulolytic bacteria and urinary excretion of purine derivatives in growing beef steers. Anim Feed Sci Tech 221, 185194.CrossRefGoogle Scholar
Northrop-Clewes, CA & Thurnham, DI (2012) The discovery and characterization of riboflavin. Ann Nutr Metab 61, 224230.CrossRefGoogle ScholarPubMed
Hall, G, Cheng, EW & Burrows, W (1953) B-vitamins and other factors stimulatory to cellulose digestion by washed suspensions of rumen microorganisms. J Animal Sci 12, 918919.Google Scholar
Bonhomme, A (1990) Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim Feed Sci Tech 30, 203266.CrossRefGoogle Scholar
Wu, HM, Zhang, J, Wang, C, et al. (2021) Effects of riboflavin supplementation on performance, nutrient digestion, rumen microbiota composition and activities of Holstein bulls. Brit J Nutr 126, 12881295.CrossRefGoogle ScholarPubMed
Majee, DN, Schwab, EC, Bertics, SJ, et al. (2003) Lactation performance by dairy cows fed supplemental biotin and a B-vitamin blend. J Dairy Sci 86, 21062112.CrossRefGoogle Scholar
García-Minguillán, CJ, Fernandez-Ballart, JD, Ceruelo, S, et al. (2014) Riboflflavin status modififies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes Nutr 9, 111.CrossRefGoogle ScholarPubMed
Ganji, G & Kafai, MR (2004) Frequent consumption of milk, yogurt, cold breakfast cereals, peppers and cruciferous vegetables and intakes of dietary folate and riboflavin but not vitamins B12 and B6 are inversely associated with serum total homocysteine concentrations in the US population. Am J Clin Nutr 80, 15001507.CrossRefGoogle Scholar
AOAC (2000) Official Methods of Analysis, 17th ed. Arlington, VA: Association of Official Analytical Chemists.Google Scholar
Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 35833597.CrossRefGoogle Scholar
Van-Keulen, J & Young, BA (1977) Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci 44, 282289.CrossRefGoogle Scholar
Agarwal, N, Kamra, DN, Chaudhary, LC, et al. (2002) Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett Appl Microbiol 34, 329336.CrossRefGoogle ScholarPubMed
Rodrigues, MA, Pinto, PA, Bezerra, RM, et al. (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141, 326338.CrossRefGoogle Scholar
Yu, Z & Morrison, M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal sample. BioTechniques 36, 808812.CrossRefGoogle Scholar
Zhou, YW, McSweeney, CS, Wang, JK, et al. (2012) Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets. Animal 6, 815823.CrossRefGoogle ScholarPubMed
Stevenson, DM & Weimer, PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75, 165174.CrossRefGoogle ScholarPubMed
Kongmun, P, Wanapat, M, Pakdee, P, et al. (2010) Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127, 3844.CrossRefGoogle Scholar
SAS (Statistics Analysis System) (2002) User’s Guide: Statistics, Version 9 Edition. Cary, NC: SAS.Google Scholar
Levesque, J, Girard, CL, Matte, JJ, et al. (1993) Dietary supplements of folic acid: blood and growth responses of white veal calves. Livest Prod Sci 34, 7182.CrossRefGoogle Scholar
Hwang, SY, Kang, YJ, Sung, B, et al. (2015) Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the AKT signaling pathway. Int J Mol Med 36, 10731080.CrossRefGoogle ScholarPubMed
Petitclerc, D, Dumoulin, P, Ringuet, H, et al. (1999) Plane of nutrition and folic acid supplementation between birth and 4 months of age on mammary development of dairy heifers. Can J Anim Sci 79, 227234.CrossRefGoogle Scholar
Davidson, GP & Townley, RRW (1977) Structural and functional abnormalities of the small intestine due to nutritional folic acid deficiency in infancy. J Pediatr 90, 590594.CrossRefGoogle ScholarPubMed
Liu, JB, Chen, DW, Mao, XB, et al. (2011) Effects of maternal folic acid supplementation on morphology and apoptosis-related gene expression in jejunum of newborn intrauterine growth retarded piglets. Arch Anim Nutr 65, 376385.CrossRefGoogle ScholarPubMed
Parnian-Khajehdizaj, F, Taghizadeh, A, Hosseinkhani, A, et al. (2018) Evaluation of dietary supplementation of B vitamins and HMBI on fermentation kinetics, ruminal or post-ruminal diet digestibility using modified in vitro techniques. J Biosci Biotech 7, 125133.Google Scholar
Russell, JB & Wilson, DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79, 15031509.CrossRefGoogle ScholarPubMed
Castillo-González, AR, Burrola-Barraza, ME, Domínguez-Viveros, J, et al. (2014) Rumen microorganisms and fermentation. Arch Med Vet 46, 49361.CrossRefGoogle Scholar
Demeyer, DI (1981) Rumen microbes and digestion of plant cell walls. Agric Environ 6, 295337.CrossRefGoogle Scholar
Orpin, CG (1984) The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim Feed Sci Technol 10, 121143.CrossRefGoogle Scholar
Wang, L, Zou, L, Li, J, et al. (2021) Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration and intestinal microbiota of weaned piglets. J Anim Sci 99, 19.CrossRefGoogle ScholarPubMed
Maynard, C, Cummins, I, Green, J, et al. (2018) A bacterial route for folic acid supplementation. BMC Biol 16, 6777.CrossRefGoogle ScholarPubMed
Firkins, JL, Yu, Z & Morrison, M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90, E1E16.CrossRefGoogle ScholarPubMed
Verbic, J, Chen, XB, MacLeod, NA, et al. (1990) Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers. J Agr Sci 114, 243248.CrossRefGoogle Scholar
Larsen, M & Kristensen, NB (2013) Precursors for liver gluconeogenesis in periparturient dairy cows. Animal 7, 16401650.CrossRefGoogle ScholarPubMed
Khan, ZM, Lei, L, Zhang, Z, et al. (2020) Folic acid supplementation regulates milk production variables, metabolic associated genes and pathways in perinatal Holsteins. J Anim Physiol Anim Nutr 104, 438492.CrossRefGoogle ScholarPubMed
Preynat, A, Lapierre, H, Thivierge, MC, et al. (2009) Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J Dairy Sci 92, 677689.CrossRefGoogle ScholarPubMed
Duplessis, M, Lapierre, H, Pellerin, D, et al. (2017) Effects of intramuscular injections of folic acid, vitamin B12, or both, on lactational performance and energy status of multiparous dairy cows. J Dairy Sci 100, 40514064.CrossRefGoogle ScholarPubMed
Depeint, F, Bruce, WR, Shangari, N, et al. (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163, 94112.CrossRefGoogle Scholar
Wang, YP, Wei, JY, Yang, JJ, et al. (2014) Riboflavin supplementation improves energy metabolism in mice exposed to acute hypoxia. Physiol Res 63:341350.CrossRefGoogle ScholarPubMed
Nakano, E, Mushtaq, S, Heath, PR, et al. (2011) Riboflavin depletion impairs cell proliferation in adult human duodenum: identification of potential effectors. Dig Dis Sci 56, 10071019.CrossRefGoogle ScholarPubMed
Sepúlveda Cisternas, I, Salazar, JC & García-Angulo, VA (2018) Overview on the bacterial iron-riboflflavin metabolic axis. Front Microbiol 9, 1478.CrossRefGoogle ScholarPubMed
Beaudet, V, Gervais, R, Graulet, B, et al. (2016) Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows. J Dairy Sci 99, 27302739.CrossRefGoogle Scholar