Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-r8t2r Total loading time: 0.287 Render date: 2022-07-05T10:36:54.424Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet

Published online by Cambridge University Press:  16 October 2020

Christian Caceres
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Mi-Bo Kim
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Minkyung Bae
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA Department of Food and Nutrition, Changwon National University, Changwon, Gyeongsangnam-do51140, South Korea
Tho X. Pham
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Yoojin Lee
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Siqi Hu
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Edward N. O’Neill
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Bohkyung Kim
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA Department of Food Science and Nutrition, Pusan National University, Busan46241, South Korea
Young-Ki Park
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
Ji-Young Lee*
Affiliation:
Department of Nutritional Sciences, University of Connecticut, Storrs, CT06269, USA
*
*Corresponding author: Ji-Young Lee, fax +1 860 486 3674, email ji-young.lee@uconn.edu

Abstract

Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin–cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid β-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.

Type
Full Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hurt, RT, Kulisek, C, Buchanan, LA, et al. (2010) The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol (N Y) 6, 780792.Google ScholarPubMed
Ruiz-Nunez, B, Pruimboom, L, Dijck-Brouwer, DA, et al. (2013) Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem 24, 11831201.CrossRefGoogle Scholar
Surmi, BK & Hasty, AH (2008) Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol 3, 545556.CrossRefGoogle ScholarPubMed
Guilherme, A, Virbasius, JV, Puri, V, et al. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367377.CrossRefGoogle ScholarPubMed
Tetens, I & Alinia, S (2009) The role of fruit consumption in the prevention of obesity. J Hortic Sci Biotechnol 84, 4751.CrossRefGoogle Scholar
Jennings, A, Welch, AA, Spector, T, et al. (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144, 202208.CrossRefGoogle ScholarPubMed
Krga, I, Monfoulet, L-E, Konic-Ristic, A, et al. (2016) Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations. Arch Biochem Biophys 599, 5159.CrossRefGoogle ScholarPubMed
Thoppil, RJ, Bhatia, D, Barnes, KF et al. (2012) Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr Cancer Drug Targets 12, 12441257.Google Scholar
Côté, J, Caillet, S, Doyon, G, et al. (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50, 666679.CrossRefGoogle ScholarPubMed
Huang, Y, Nikolic, D, Pendland, S, et al. (2009) Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli, COX-2 activity, pro-inflammatory cytokine release and the NF-κβ transcriptional response in vitro . Pharm Biol 47, 1825.CrossRefGoogle ScholarPubMed
Sun, J & Liu, RH (2006) Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett 241, 124134.CrossRefGoogle ScholarPubMed
McKay, DL & Blumberg, JB (2007) Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr Rev 65, 490502.CrossRefGoogle ScholarPubMed
Kim, MJ, Ohn, J, Kim, JH, et al. (2011) Effects of freeze-dried cranberry powder on serum lipids and inflammatory markers in lipopolysaccharide treated rats fed an atherogenic diet. Nutr Res Pract 5, 404411.CrossRefGoogle ScholarPubMed
Anhê, FF, Roy, D, Pilon, G, et al. (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64, 872883.CrossRefGoogle ScholarPubMed
Ruel, G, Pomerleau, S, Couture, P, et al. (2006) Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr 96, 357364.CrossRefGoogle ScholarPubMed
Kim, MJ, Jung, HN, Kim, KN, et al. (2008) Effects of cranberry powder on serum lipid profiles and biomarkers of oxidative stress in rats fed an atherogenic diet. Nutr Res Pract 2, 158164.CrossRefGoogle ScholarPubMed
Rubin, EM, Ishida, BY, Clift, SM, et al. (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A 88, 434438.CrossRefGoogle ScholarPubMed
Reagan-Shaw, S, Nihal, M & Ahmad, N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659661.CrossRefGoogle ScholarPubMed
Kim, B, Ku, CS, Pham, TX, et al. (2013) Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr Res 33, 406413.CrossRefGoogle ScholarPubMed
Yang, Y, Seo, JM, Nguyen, A, et al. (2011) Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr 141, 16111617.CrossRefGoogle ScholarPubMed
Ku, CS, Pham, TX, Park, Y, et al. (2013) Edible blue–green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochim Biophys Acta 1830, 29812988.CrossRefGoogle ScholarPubMed
Zhao, L, Huang, Y & Du, M (2019) Farm animals for studying muscle development and metabolism: dual purposes for animal production and human health. Anim Front 9, 2127.CrossRefGoogle ScholarPubMed
Villarroya, F, Iglesias, R & Giralt, M (2007) PPARs in the control of uncoupling proteins gene expression. PPAR Res 2007, 74364.CrossRefGoogle ScholarPubMed
Bastien, M, Poirier, P, Lemieux, I, et al. (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56, 369381.CrossRefGoogle ScholarPubMed
Novotny, JA, Baer, DJ, Khoo, C, et al. (2015) Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr 145, 11851193.CrossRefGoogle ScholarPubMed
Caron, A, Kautza, B & Wilson, T (2005) Cholesterol lowering effects of low calorie cranberry juice in humans. FASEB J 19, A1009A1010.Google Scholar
Kim, MJ, Jung, HN, Kim, KN, et al. (2008) Effects of cranberry powder on serum lipid profiles and biomarkers of oxidative stress in rats fed an atherogenic diet. Nutr Res Pract 2, 158164.CrossRefGoogle ScholarPubMed
Murano, I, Barbatelli, G, Parisani, V, et al. (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49, 15621568.CrossRefGoogle ScholarPubMed
Lee, M-J, Wu, Y & Fried, SK (2010) Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care 13, 371.CrossRefGoogle ScholarPubMed
Benn, T, Kim, B, Park, YK, et al. (2014) Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 25, 10191025.CrossRefGoogle ScholarPubMed
Jia, JJ, Zhang, X, Ge, CR, et al. (2009) The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 10, 519526.CrossRefGoogle ScholarPubMed
Clapham, JC, Arch, JR, Chapman, H, et al. (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415418.CrossRefGoogle ScholarPubMed
Haas, MJ, Mazza, AD, Wong, NC, et al. (2012) Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids. Obesity (Silver Spring) 20, 721729.CrossRefGoogle ScholarPubMed
Curtiss, LK, Valenta, DT, Hime, NJ, et al. (2006) What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol 26, 1219.CrossRefGoogle ScholarPubMed
Florvall, G, Basu, S & Larsson, A (2006) Apolipoprotein A1 is a stronger prognostic marker than are HDL and LDL cholesterol for cardiovascular disease and mortality in elderly men. J Gerontol A Biol Sci Med Sci 61, 12621266.CrossRefGoogle ScholarPubMed
Zhang, Y, Zanotti, I, Reilly, MP, et al. (2003) Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo . Circulation 108, 661663.CrossRefGoogle ScholarPubMed
Shidfar, F, Heydari, I, Hajimiresmaiel, SJ, et al. (2012) The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp(a), and Paraoxonase-1 activity in type 2 diabetic male patients. J Res Med Sci 17, 355360.Google Scholar
Sultana, A, Cochran, BJ, Tabet, F, et al. (2016) Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. FASEB J 30, 23242335.CrossRefGoogle ScholarPubMed
Vanella, L, Li, M, Kim, D, et al. (2012) ApoA1: mimetic peptide reverses adipocyte dysfunction in vivo and in vitro via an increase in heme oxygenase (HO-1) and Wnt10b. Cell Cycle 11, 706714.CrossRefGoogle ScholarPubMed
Umemoto, T, Han, CY, Mitra, P, et al. (2013) Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res 112, 13451354.CrossRefGoogle ScholarPubMed
Verghese, PB, Arrese, EL, Howard, AD, et al. (2008) Brefeldin A inhibits cholesterol efflux without affecting the rate of cellular uptake and re-secretion of apolipoprotein A-I in adipocytes. Arch Biochem Biophys 478, 161166.CrossRefGoogle ScholarPubMed
Howard, AD, Verghese, PB, Arrese, EL, et al. (2011) The beta-subunit of ATP synthase is involved in cellular uptake and resecretion of apoA-I but does not control apoA-I-induced lipid efflux in adipocytes. Mol Cell Biochem 348, 155164.CrossRefGoogle Scholar
Wang, S, Peng, DQ & Yi, Y (2016) The unsolved mystery of apoA-I recycling in adipocyte. Lipids Health Dis 15, 35.CrossRefGoogle ScholarPubMed
Supplementary material: File

Caceres et al. supplementary material

Caceres et al. supplementary material

Download Caceres et al. supplementary material(File)
File 18 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *