Skip to main content Accessibility help
×
Home

5-Hydroxyvitamin D concentration in paediatric cancer patients from Scotland: a prospective cohort study

  • Raquel Revuelta Iniesta (a1) (a2), Ilenia Paciarotti (a1) (a2), Isobel Davidson (a1), Jane M. McKenzie (a1), Celia Brand (a3), Richard F. M. Chin (a2) (a3) (a4), Mark F. H. Brougham (a5) and David C. Wilson (a2) (a6)...

Abstract

Children with cancer are potentially at a high risk of plasma 25-hydroxyvitamin D (25(OH)D) inadequacy, and despite UK vitamin D supplementation guidelines their implementation remains inconsistent. Thus, we aimed to investigate 25(OH)D concentration and factors contributing to 25(OH)D inadequacy in paediatric cancer patients. A prospective cohort study of Scottish children aged <18 years diagnosed with, and treated for, cancer (patients) between August 2010 and January 2014 was performed, with control data from Scottish healthy children (controls). Clinical and nutritional data were collected at defined periods up to 24 months. 25(OH)D status was defined by the Royal College of Paediatrics and Child Health as inadequacy (<50 nmol/l: deficiency (<25 nmol/l), insufficiency (25–50 nmol/l)), sufficiency (51–75 nmol/l) and optimal (>75 nmol/l). In all, eighty-two patients (median age 3·9, interquartile ranges (IQR) 1·9–8·8; 56 % males) and thirty-five controls (median age 6·2, IQR 4·8–9·1; 49 % males) were recruited. 25(OH)D inadequacy was highly prevalent in the controls (63 %; 22/35) and in the patients (64 %; 42/65) at both baseline and during treatment (33–50 %). Non-supplemented children had the highest prevalence of 25(OH)D inadequacy at every stage with 25(OH)D median ranging from 32·0 (IQR 21·0–46·5) to 45·0 (28·0–64·5) nmol/l. Older age at baseline (R −0·46; P<0·001), overnutrition (BMI≥85th centile) at 3 months (P=0·005; relative risk=3·1) and not being supplemented at 6 months (P=0·04; relative risk=4·3) may have contributed to lower plasma 25(OH)D. Paediatric cancer patients are not at a higher risk of 25(OH)D inadequacy than healthy children at diagnosis; however, prevalence of 25(OH)D inadequacy is still high and non-supplemented children have a higher risk. Appropriate monitoring and therapeutic supplementation should be implemented.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      5-Hydroxyvitamin D concentration in paediatric cancer patients from Scotland: a prospective cohort study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      5-Hydroxyvitamin D concentration in paediatric cancer patients from Scotland: a prospective cohort study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      5-Hydroxyvitamin D concentration in paediatric cancer patients from Scotland: a prospective cohort study
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Dr Raquel Revuelta Iniesta, email rrevueltainiesta@qmu.ac.uk

References

Hide All
1. Ahmed, SF, Franey, C, McDevitt, H, et al. (2011) Recent trends and clinical features of childhood vitamin D deficiency presenting to a children’s hospital in Glasgow. Arch Dis Child 96, 694696.
2. Royal College of Paediatrics and Child Health (RCPCH) (2013) Guide for vitamin D in childhood. http://www.rcpch.ac.uk/vitamin-d (accessed January 2014).
3. Holick, MF, Binkley, NC, Bischoff-Ferrari, H, et al. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96, 19111930.
4. Pramyothin, P & Holick, MF (2012) Vitamin D supplementation: guidelines and evidence for subclinical deficiency. Curr Opin Gastroenterol 28, 139150.
5. Choudhary, A, Chou, J, Heller, G, et al. (2013) Prevalence of vitamin D insufficiency in survivors of childhood cancer. Pediatr Blood Cancer 60, 12371239.
6. Revuelta Iniesta, R, Rush, R, Paciarotti, I, et al. (2015) Systematic review and meta-analysis: prevalence and possible causes of vitamin D deficiency and insufficiency in pediatric cancer patients. Clin Nutr 35, 95108.
7. Holick, MF (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81, 353373.
8. Public Health England (2007) Update on Vitamin D: Position Statement by the Scientific Advisory Committee on Nutrition. London: TSO.
9. Oeffinger, KC, Mertens, AC, Sklar, CA, et al. (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355, 15721582.
10. Zhou, C, Assem, M, Tay, JC, et al. (2006) Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest 116, 17031712.
11. Herbst, RS, Bajorin, DF, Bleiberg, H, et al. (2006) Clinical Cancer Advances 2005: major research advances in cancer treatment, prevention, and screening – a report from the American Society of Clinical Oncology. J Clin Oncol 24, 190205.
12. Oeffinger, KC & Hudson, MM (2004) Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J Clin 54, 208236.
13. Wallace, WHB, Thompson, L & Anderson, RA (2013) Long term follow-up of survivors of childhood cancer: summary of updated SIGN guidance. BMJ 346, f1190.
14. Steliarova-Foucher, E, Stiller, C, Lacour, B, et al. (2005) International Classification of Childhood Cancer, third edition. Cancer 103, 14571467.
15. Kazak, AE, Hocking, MC, Ittenbach, RF, et al. (2012) A revision of the intensity of treatment rating scale: classifying the intensity of pediatric cancer treatment. Pediatr Blood Cancer 59, 9699.
16. The Scottish Government (2012) Scottish Index of Multiple Deprivation. http://www.scotland.gov.uk/Topics/Statistics/SIMD/SIMDPostcodeLookup (accessed March 2012).
17. Royal Hospital for Sick Children (2014) Edinburgh Clinical Chemistry Laboratory Handbook. Edinburgh: Royal Hospital for Sick Children.
18. Cole, TJ, Freeman, JV & Preece, MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73, 2529.
19. Reilly, JJ, Montgomery, C, Jackson, D, et al. (2001) Energy intake by multiple pass 24 h recall and total energy expenditure: a comparison in a representative sample of 3–4-year-olds. Br J Nutr 86, 601605.
20. Wise, A (2005) Wind diets. Robert Gordon University.
21. Vandenbroucke, JP, von Elm, E, Altman, DG, et al. (2014) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Int J Surg 12, 15001524.
22. Sinha, A, Avery, P, Turner, S, et al. (2011) Vitamin D status in paediatric patients with cancer. Pediatr Blood Cancer 57, 594598.
23. Paciarotti, I, Revuelta Iniesta, R, McKenzie, JM, et al. (2015) Low plasma vitamin D (25-hydroxycholecalciferol) in children and adolescents diagnosed with cancer: a case-control study. EC Nutr 3, 513520.
24. Revuelta Iniesta, R, Paciarotti, I, Brougham, MFH, et al. (2015) Effects of pediatric cancer and its treatment on nutritional status: a systematic review. Nutr Rev 73, 276295.
25. Sala, A, Pencharz, P & Barr, RD (2004) Children, cancer, and nutrition – a dynamic triangle in review. Cancer 100, 677687.
26. Modan-Moses, D, Pinhas-Hamiel, O, Munitz-Shenkar, D, et al. (2012) Vitamin D status in pediatric patients with a history of malignancy. Pediatr Res 72, 620624.
27. Atkinson, SA, Halton, JM, Bradley, C, et al. (1998) Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl 11, 3539.
28. Halton, JM, Atkinson, SA, Fraher, L, et al. (1996) Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res 11, 17741783.
29. Holick, MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19, 7378.
30. Atkinson, SA (2008) Vitamin D status and bone biomarkers in childhood cancer. Pediatr Blood Cancer 486, Suppl. 2, 479482; discussion.
31. Greer, FR (2009) Defining vitamin D deficiency in children: beyond 25-OH vitamin D serum concentrations. Pediatrics 124, 14711473.
32. Kumar, J, Muntner, P, Kaskel, FJ, et al. (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004. Pediatrics 124, e362e370.
33. Rosen, GP, Beebe, KL & Shaibi, GQ (2013) Vitamin D levels differ by cancer diagnosis and decline over time in survivors of childhood cancer. Pediatr Blood Cancer 60, 949952.
34. Tanner, J (1990) Physical Growth from Conception to Maturity. Cambridge, MA: Harvard University Press.
35. Wortsman, J, Matsuoka, LY, Chen, TC, et al. (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72, 690693.

Keywords

Type Description Title
WORD
Supplementary materials

Iniesta supplementary material
Table S1

 Word (23 KB)
23 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed