No CrossRef data available.
Article contents
Priority claims and public disputes in astronomy: E.M. Antoniadi, J. Comas i Solà and the search for authority and social prestige in the early twentieth century
Published online by Cambridge University Press: 02 February 2011
Abstract
The reorganization of the astronomical community during the late nineteenth and early twentieth centuries, due to the rise of astrophysics, was seen by some scientists as an opportunity to join an international community of prestigious researchers. This was the case of astronomers such as Josep Comas i Solà, who publicly argued with Eugène Michel Antoniadi during the first decades of the twentieth century about the veracity of astronomical observations and theoretical conclusions on Mars and Jupiter. Their priority claims and public disputes have to be understood in a new context that provided an exceptional opportunity for amateur and professional astronomers both to play an active role in the most interesting scientific debates of these years and to gain prestige, legitimacy and power.
- Type
- Research Article
- Information
- The British Journal for the History of Science , Volume 44 , Issue 4 , December 2011 , pp. 509 - 531
- Copyright
- Copyright © British Society for the History of Science 2011
References
1 See, for instance, Engelhardt, H. Tristram Jr and Caplan, Arthur L. (eds.), Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology, Cambridge: Cambridge University Press, 1987CrossRefGoogle Scholar. See also Dascal, Marcelo, ‘The study of controversies and the theory and history of science’, Science in Context (1998) 11, pp. 147–154CrossRefGoogle Scholar; and Freudenthal, Gideon, ‘“Controversy”’, Science in Context (1998) 11, pp. 155–160CrossRefGoogle Scholar. There is a large existing literature on scientific controversies, highly influenced by the school of sociological research associated with Robert K. Merton and the sociology of scientific knowledge. See, for example, Merton, Robert K., ‘Priorities in scientific discoveries: a chapter in the sociology of science’, American Sociological Review (1957) 22, pp. 635–659CrossRefGoogle Scholar; Collins, H.M. (ed.), Knowledge and Controversy: Studies in Modern Natural Science, special issue of Social Studies of Science (1981) 11Google Scholar; and Barnes, Barry and Shapin, Steven, Natural Order: Historical Studies of Scientific Culture, Beverly Hills: Sage, 1979Google Scholar.
2 See, for example, Collins, H.M., ‘The place of the “core-set” in modern science: social contingency with methodological property in science’, History of Science (1981) 19, pp. 6–19CrossRefGoogle Scholar; Pickering, Andrew, ‘The hunting of the quark’, Isis (1981) 72, pp. 216–235CrossRefGoogle Scholar; Pinch, Trevor J., ‘The sun-set: the presentation of certainty in scientific life’, Social Studies of Science (1981) 11, pp. 131–158CrossRefGoogle Scholar. Perhaps one of the most illuminating contributions to the study of controversies derived from scientific research has been that of Martin Rudwick, who reconstructed the story of the Devonian controversy of the 1830s and 1840s, integrating it in the social and cultural context of the period and underlining how knowledge is the product of intense rhetorical argument among scholars. See Rudwick, Martin J.S., The Great Devonian Controversy: The Shaping of Scientific Knowledge among Gentlemanly Specialists, Chicago: University of Chicago Press, 1985CrossRefGoogle Scholar.
3 Merton, Robert K., The Sociology of Science: Theoretical and Empirical Investigations, Chicago: University of Chicago Press, 1973, pp. 281–412Google Scholar.
4 Some of these aspects shaped, for example, the controversy between Lavoisier and British chemists in the late eighteenth century. See Golinski, Jan, Science as Public Culture: Chemistry and Enlightenment in Britain, 1760–1820, Cambridge: Cambridge University Press, 1992, pp. 145–152Google Scholar. There is a rich literature on these topics. For interesting recent work on discovery and priority claims see Miller, David Philip, Discovering Water: James Watt, Henry Cavendish and the Nineteenth-Century ‘Water Controversy’, Aldershot: Ashgate, 2004Google Scholar.
5 For a brief and very useful introduction to the development of astronomy and astrophysics see Gingerich, Owen (ed.), Astrophysics and Twentieth-Century Astronomy to 1950, Cambridge: Cambridge University Press, 1984Google Scholar; and North, John, The Fontana History of Astronomy and Cosmology, London: Fontana, 1994Google Scholar.
6 Here, the expression ‘amateur astronomer’ is used to denote individuals with important astronomical knowledge and expertise who saw astronomy as an intellectual and sometimes leisure activity, but not as their main source of income. Note also that astrophysics pioneers were very largely, but not exclusively, amateurs.
7 Lankford, John, ‘Amateurs and astrophysics: a neglected aspect in the development of a scientific speciality’, Social Studies of Science (1981) 11, pp. 275–303CrossRefGoogle Scholar. Amateur astronomers also played a crucial role during the late nineteenth century and the early twentieth in countries such as Spain, with figures like Josep Joaquim Lànderer Climent. See, for example, Rodolfo Gozalo Gutiérrez and Victor Navarro Brotóns, ‘Josep Joaquim Lànderer i Climent (València 1841–Tortosa 1922). La recerca fora del món acadèmic: astronomia i geologia’, in Josep M. Camarassa and Antoni Roca Rosell (eds.), Ciència i tècnica als Països Catalans. Una aproximació biogràfica, Barcelona: Fundació Catalana per a la Recerca, 1995, pp. 457–493; and Victor Navarro Brotóns and Rodolfo Gozalo Gutiérrez, ‘Entre “amateurs” i professionals: l'obra astronòmica de Josep Joaquim Lànderer i Climent (1841–1922)’, in Carles Puig-Pla et al. (eds.), Actes de les III Trobades d'Història de la Ciència i de la Tècnica als Països Catalans, Barcelona, 1996, pp. 303–312.
8 Huggins, William, The Scientific Papers of Sir William Huggins, London: William Wesley and Son, 1909, pp. 5–6Google Scholar.
9 Chapman, Allan, The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820–1920, Chichester: Wiley, 1998Google Scholar.
10 Hutchins, Roger, British University Observatories, 1772–1939, Aldershot: Ashgate, 2008Google Scholar.
11 Indeed, it was not until the second half of the nineteenth century that new French observatories like those of Longchamps, Toulouse and Alger were founded. See André, Charles and Rayet, Georges, L'astronomie practique et les observatoires en Europe et en Amérique, depuis le milieu du XVIIe siècle jusqu’à nos jours, vols. 1–2, Paris, 1874Google Scholar.
12 In Spain, the influence of Flammarion, considered one of the leading authorities in astronomy, also explains (at least partially) the increasing interest in astronomy in the country, particularly among amateur scientists. On Flammarion see Cuny, Hilaire, Camille Flammarion et l'astronomie populaire, Paris, 1964Google Scholar; de la Cotardiere, Philippe and Fuentes, Patrick, Camille Flammarion, Paris: Flammarion, 1994Google Scholar; Chaperon, Danielle, Camille Flammarion: entre astronomie et littérature, Paris: Imago, 1998Google Scholar; and Bensaude-Vincent, Bernadette, ‘Camille Flammarion: prestige de la science populaire’, Romantisme. Revue du XIXe siècle (1989) 65, pp. 93–104Google Scholar.
13 See, for example, Herrmann, Dieter B., The History of Astronomy from Herschel to Hertzsprung, Cambridge: Cambridge University Press, 1983Google Scholar.
14 Particularly relevant in this process of professionalization was the role played by the American astronomer George Ellery Hale, who established the Astrophysical Journal (1895), founded Yerkes Observatory (1897) and Mount Wilson Solar Observatory (1904), and organized the International Union for Cooperation in Solar Research (1904). On the figure of George E. Hale see, for instance, Wright, Helen, Explorer of the Universe: A Biography of George Ellery Hale, New York: Dutton, 1966Google Scholar.
15 On the changing structure of the astronomical community (and the crucial question of power within this community) during the late nineteenth century and the early twentieth, for the particular case of the United States, see Lankford, John, American Astronomy: Community, Careers, and Power, 1859–1940, Chicago: University of Chicago Press, 1997Google Scholar.
16 Ruiz-Castell, Pedro, Astronomy and Astrophysics in Spain (1850–1914), Newcastle upon Tyne: Cambridge Scholars, 2008Google Scholar.
17 A detailed treatment of Antoniadi's observations of Mars is found in Sheehan, William, Planets and Perception: Telescopic Views and Interpretations, 1609–1909, Tucson: University of Arizona Press, 1988Google Scholar.
18 See, for instance, ‘Nouvelles de la science.– Variétés: une épée dans la Lune’, L'astronomie (1890) 9, p. 75Google Scholar; Comas i Solà, Josep, ‘Nouvelles de la science.– Variétés: l’étoile multiple σ d'Orion’, L'astronomie (1890) 9, p. 154Google Scholar; ‘L’éclipse de soleil du 17 juin’, L'astronomie (1890) 9, pp. 241–257Google Scholar; idem, ‘Nouvelles de la science.– Variétés: Antarès’, L'astronomie (1890) 9, pp. 311–312Google Scholar; idem, ‘Nouvelles de la science.– Variétés: Saturne, ζ du Cancer, Antarès’, L'astronomie (1890) 9, pp. 353–354Google Scholar; Armelin, G., ‘Société astronomique de France. Séance du 1er octobre 1890’, L'astronomie (1890) 9, pp. 424–428Google Scholar; Gérigny, Philippe, ‘Société astronomique de France. Séance du 3 décembre 1890’, L'astronomie (1891) 10, pp. 70–72Google Scholar; ‘La tache rouge de Jupiter’, L'astronomie (1891) 10, pp. 321–322Google Scholar; Flammarion, Camille, ‘Nouvelles observations sur la planète Mars’, L'astronomie (1892) 11, pp. 36–382, 377Google Scholar; ‘L’éclipse totale de lune du 4 novembre dernier’, L'astronomie (1893) 12, pp. 13–18Google Scholar; ‘Nouvelles de la science.– Variétés : conjonction de Saturne avec l’étoile double gamma de la Vierge’, L'astronomie (1893) 12, pp. 233–235Google Scholar; ‘Observations de Jupiter faites à l'Observatoire de Juvisy, à Bruxelles et en Espagne. Observations Comas, de M. José, à Barcelone’, L'astronomie (1893) 12, pp. 81–90Google Scholar; and Armelin, G., ‘Société astronomique de France. Séance du 3 Janvier 1894’, L'astronomie (1894) 13, pp. 70–73Google Scholar.
19 On the figure of Josep Comas i Solà see Roca Rosell, Antoni (ed.), Josep Comas i Solà, astrònom i divulgador, Barcelona: Ajuntament de Barcelona, 2004Google Scholar. His work and original contributions to astronomy in journals such as Astronomische Nachrichten and L'astronomie, where Flammarion publicly extolled his work, were recognized early in his career, as his election as fellow of the Royal Astronomical Society on 14 March 1902 shows, being proposed by A. Stanley Williams. See Monthly Notices of the Royal Astronomical Society (1901–1902) 62, p. 345.
20 On Antoniadi see, for example, McKim, Richard J., ‘The life and times of E.M. Antoniadi, 1870–1944. Part 1: an astronomer in the making’, Journal of the British Astronomical Association (1993) 103, pp. 164–170Google Scholar; and idem, ‘The life and times of E.M. Antoniadi, 1870–1944. Part 2: the Meudon years’, Journal of the British Astronomical Association (1993) 103, pp. 219–227Google Scholar.
21 It is worth noting here that the Liverpool Astronomical Society was no minor organization and played a crucial role in the creation of the British Astronomical Association.
22 British Astronomical Association, ‘The history of the British Astronomical Association. The first fifty years. Chapter 1: “Formation and first session”’, British Astronomical Association Memoirs (1989) 42, pp. 7–10Google Scholar.
23 As Comas i Solà wrote, ‘Après la galante critique de M. Antoniadi par rapport à mes observations de Mars faites en 1894 (avec une lunette de 108mm), critique publiée dans une note du “Sixth Report of the Section for the Observation of Mars”, page 75, et après ma protestation contre cette critique, protestation publiée dans le “Journal of the British Astronomical Association”, page 438 du nº8 de l'année courante, M. Antoniadi explique la raison de sa critique à la page 47 du “Seventh Report of the Section”. M. Antoniadi dit, simplement, qu'avec un 4½ pouces il était impossible de voir, en 1894, le Lac du Phoenix, obscur, défini et rougeâtre, puisque le grand Dawes ne put jamais l'apercevoir auparavant avec un 8 pouces’. See Comas i Solà, J., ‘Quelques considérations sur mes observations de Mars’, Journal of the British Astronomical Association (1910–1911) 21, pp. 199–201, 199Google Scholar.
24 ‘Lacus Phoenicis on a good night appears as a small, nearly round, almost black spot, resembling the shadow of a satellite of Jupiter when in transit’. See Williams, A. Stanley, ‘Notes on Mars in 1894’, The Observatory (1894) 17, pp. 347–349Google Scholar.
25 Comas i Solà, op. cit. (23), p. 200.
26 Josep Comas i Solà, Astronomía y ciencia general, Barcelona, 1907, p. 362. These lines were originally published in 1903 in the Spanish newspaper La Vanguardia.
27 See, for example, Flammarion, Camille and Antoniadi, Eugène Michel, ‘Nova (3.1901) Persei’, Astronomische Nachrichten (1901) 156, pp. 253–254Google Scholar.
28 ‘Il y a bien long-temps que j'ai remarqué un sentiment de jalousie à mon égard de M. Comas Solà. Ainsi, lorsque j'ai découvert l'aureole optique autour de la Nova Persei en 1901, découverte publiée sous les noms Flammarion et Antoniadi, comme ayant été faite a l'Observatoire de M. Flammarion, M. Comas Solà, dans son livre sur l'astronomie, a dit que c’était M. Flammarion qui avait découvert ce fait, sans mentionner mon nom … En éliminant mon nom, M. Comas Solà altère la vérité’. Antoniadi to Raurich, 19 December 1909, Fons personal de Salvador Raurich, Biblioteca de Catalunya, Barcelona (subsequently SR), Ms 3943/2.
29 See McKim, Part 1, op. cit. (20), p. 168.
30 Note that Lowell and others argued that the canals themselves were too small to be observed from the Earth and therefore observers saw wide bands of vegetation that ran alongside and were watered by the canals.
31 Barnard, E.E., ‘Micrometrical measures of the ball and ring system of the planet Saturn, and measures of the diameter of his satellite Titan, made with the 36-inch refractor of the Lick Observatory in the year 1895. With some remarks on large and small telescopes’, Monthly Notices of the Royal Astronomical Society (1895–1896) 56, pp. 163–172CrossRefGoogle Scholar, 166–167.
32 See, for instance, Sheehan, William, The Immortal Fire within: The Life and Work of Edward Emerson Barnard, Cambridge: Cambridge University Press, 1995Google Scholar.
33 See Sheehan, op. cit. (17). On the canal dispute see also Tucker, Jennifer, Nature Exposed: Photography as Eyewitness in Victorian Science, Baltimore: Johns Hopkins University Press, 2005Google Scholar.
34 The Mars debate became especially lively during the 1890s at the British Astronomical Association, closely linked to the extraterrestrial-life debate and the idea that the canals could be the work of intelligent agents. See Crowe, Michael J., The Extraterrestrial Life Debate 1750–1900: The Idea of Plurality of Worlds from Kant to Lowell, Cambridge: Cambridge University Press, 1986, pp. 480–546Google Scholar.
35 On Lowell and his campaign to achieve scientific proof and recognition for the canals of Mars see Hoyt, William Graves, Lowell and Mars, Tucson: University of Arizona Press, 1976Google Scholar; and Strauss, David, Percival Lowell: The Culture and Science of a Boston Brahmin, Cambridge, MA: Harvard University Press, 2001Google Scholar.
36 For an interesting historical approach to how relevant perceptual factors were in telescopic observations and the resulting images see Sheehan, op. cit. (17).
37 Antoniadi to Raurich, 19 December 1909, SR, Ms 3943/2.
38 The popular historical interest in inhabited Mars has recently been revisited, emphasizing the strong links that astronomical narratives about the red planet had with geography and with the knowledge-production processes characteristic of this latter field. See Lane, K. Maria D., ‘Geographers of Mars: cartographic inscription and exploration narrative in late Victorian representations of the Red Planet’, Isis (2005) 96, pp. 477–506CrossRefGoogle ScholarPubMed.
39 These lines were part of a lecture entitled ‘The eternal stars’. See Reminiscences and Letters of Sir Robert Ball (ed. W. Valentine Ball), London: Cassell, 1915, pp. 235–236. On the figure of Robert Ball and his role in the popularization of astronomy see Ruiz-Castell, Pedro, ‘Robert Ball y la divulgación de la astronomía en la Gran Bretaña Victoriana’, Cronos (2004) 7, pp. 105–127Google Scholar.
40 Comas i Solà, op. cit. (26), p. 372.
41 Antoniadi to Barnard, 11 May 1911, Vanderbilt University Archives, cited in McKim, Part 2, op. cit. (20), p. 220, original emphasis.
42 For example, when Antoniadi was offered the chance to become the director of the Observatory of Athens, he was requested to present an honorary academic degree from a European university, which he could not obtain. Antoniadi to Raurich, 24 August 1910, SR, Ms 3943/2.
43 ‘J'ai aussi une formidable correspondance avec les principaux savants du monde, commençant le 21 septembre 1909, correspondance qui va bientôt briser toute résistance. La guerre avec Comas Solà va s'allumer en Angleterre’. Antoniadi to Raurich, 19 December 1909, SR, Ms 3943/2.
44 Antoniadi's reluctance to accept the results of Comas i Solà’s observations during the 1890s may be reasonable. In fact, as has recently been pointed out, several planetary observations reported from 1890 and 1894 by Comas i Solà were under the theoretical resolution limit of his telescope. See Oliver, J. Maria, Josep Comas Solà, observador visual, Sabadell: Agrupació Astronòmica de Sabadell, 2007Google Scholar. However, it is suggested here that Comas i Solà was able to make such observations because of his long experience as an astronomer – even when he may have not distinguished well-defined details because of the low image contrast.
45 ‘With their excellent 4¼-in. by Fraunhofer, Beer and Maedler saw no «canals» on Mars. Comas Solá, with a French glass (and such glasses are seldom good, unless coming from the Brothers Henry), saw 42 ‘canals’. But Beer and Maedler were much more skilled observers than Comas Solá, and their evidence seems decisive … For it would be absurd to believe that markings which eluded the eagle eye of Dawes with 8 inches could ever be seen by Comas Solá with 4¼ inches!’. Antoniadi to Raurich, 8 November 1910, SR, Ms 3943/2. Note that, despite playing important roles in similar disputes, atmospheric issues related to observational sites were not present in this controversy between Antoniadi and Comas i Solà.
46 This tension among the Catalan astronomical community is briefly developed in Rosell, Antoni Roca and Sánchez Ron, José M., Esteban Terradas (1883–1950). Ciencia y técnica en la España contemporánea, Madrid: Instituto Nacional de Técnica Aeroespacial, 1990, pp. 54–60Google Scholar. Eduard Fontserè i Riba held the Chair of Astronomy promoted by the Sociedad Española Protectora de la Ciencia in Barcelona and was later appointed professor of geodesy at the University of Barcelona. He is considered the founding father of professional meteorology in Catalonia. On his figure see, for instance, Rosell, Antoni Roca, Ortiz, Josep Batlló and Dumenjó, Joan Arús, Biografia del doctor Eduard Fontserè i Riba (Barcelona 1870–Barcelona 1970): promotor de la meteorologia professional catalana, Barcelona: Associació Catalana de Meteorologia, 2004Google Scholar.
47 Sociedad Astronómica de Barcelona. Actas. Juntas Generales, SR, Ms 4688. On the role of the Astronomical Society of Barcelona as a common place for professionals, amateurs and the general public see Nieto-Galán, Agustí, ‘“… Not fundamental in a state of full ‘civilization’”: the Sociedad Astronómica de Barcelona (1910–1921) and its Popularization Programme’, Annals of Science (2009) 66, pp. 497–528CrossRefGoogle Scholar.
48 Antoni Roca Rosell, ‘Una vida consagrada a la ciència’ in Roca Rosell, op. cit. (19), pp. 13–42.
49 The particular role played by Maunder's Christian convictions in formulating both his belief in the illusory nature of the Martian canals and his opposition to finding extraterrestrial life on the red planet has been studied in Crowe, Michael J., ‘Astronomy and religion (1780–1915): four case studies involving ideas of extraterrestrial life’, Osiris (2001) 16, pp. 209–226CrossRefGoogle Scholar.
50 Antoniadi to Raurich, 17 January 1910, SR, Ms 3943/2.
51 ‘Ces dates prouvent d'une façon irrécusable que l'originalité astronomique de Comas (y) Solà est voisine de zéro, et que son attitude réelle est celle du chacal marchant derrière le lion, dans l'espoir de lécher quelque os’. Antoniadi to Raurich, 17 January 1910, SR, Ms 3943/2.
52 Raurich, Salvador, ‘El enigma del planeta Marte’, Por esos mundos (1910) 11 [184], pp. 706–714Google Scholar.
53 As Lankford has pointed out, this debate achieved symbolic resolution in the 1910s, when most amateur astronomers, such as Theodore E.R. Phillips, recognized the immense value of large-aperture telescopes in the study of the planets. For a complete study of this controversy see Lankford, John, ‘Amateurs versus professionals: the controversy over telescope size in late Victorian science’, Isis (1981) 72, pp. 11–28Google Scholar.
54 Antoniadi to Raurich, 8 November 1910, SR, Ms 3943/2. In fact, as has been previously suggested when dealing with the Astronomical Society of Barcelona, Raurich made no explicit mention of Comas i Solà in the articles he wrote acknowledging Antoniadi's discovery of the illusory character of the Martian canals. However, both in the specialized journals (like the Boletín de la Sociedad Astronómica de Barcelona) and in more general periodicals (such as Por esos mundos) where Raurich wrote on the topic, references to Comas i Solà were easily ascertained when he criticized those who observed Mars with telescopes of 108 mm aperture, like the one regularly employed by Comas i Solà for planetary observations. See, for example, Raurich, op. cit. (52).
55 A good example is Comas i Solà’s public lecture on 17 December 1909 at the Royal Academy of Science and Arts of Barcelona. See Historial del Academico J. Comas Sola, Archives of the Royal Academy of Science and Arts of Barcelona, Barcelona, Folder ‘Documentos Referentes al Académico’.
56 ‘Vous avez noté l'approbation de mon attaque par le grand Denning, un des noms les plus glorieux de nos temps’. Antoniadi to Raurich, 24 August 1910, SR, Ms 3943/2.
57 Antoniadi to Raurich, 7 July 1910, SR, Ms 3943/2.
58 Antoniadi to Raurich, 8 November 1910, SR, Ms 3943/2.
59 During the first decades of the twentieth century most Spanish governments adopted a regenerationist rhetoric – a legacy of nineteenth-century Spanish liberal ideas that spread, particularly after the Spanish–American War of 1898, throughout various sectors of Spanish society, through the press, universities, and the parliament. In general terms, regenerationists wished for a nationwide programme of public works to create the infrastructure needed for a modern economy. Regenerationism strongly influenced the political life of the country during these years, but the concept was finally emptied of meaning, and the word was absorbed by and included as part of the established political system. See, for instance, Fusi, Juan Pablo and Palafox, Jordi, España: 1808–1996. El desafío de la modernidad, Madrid : Espasa Calpe, 1997Google Scholar; Balfour, Sebastian, El fin del imperio español (1898–1923), Barcelona: Crítica, 1997Google Scholar; Fusi, Juan Pablo, Un siglo de España: La cultura, Madrid: Marcial Pons, 1999Google Scholar; and Galán, Pedro Cerezo, El mal del siglo. El conflicto entre Ilustración y Romanticismo en la crisis finisecular del siglo XIX, Madrid: Biblioteca Nueva, 2003Google Scholar.
60 Antoniadi to Raurich, 8 November 1910, SR, Ms 3943/2, underlining in original.
61 Sagan, Carl and Fox, Paul, ‘The canals of Mars: an assessment after Mariner 9’, Icarus (1975) 25, pp. 602–612CrossRefGoogle Scholar.
62 See, for instance, Denning, William Frederick, ‘Early history of the great red spot on Jupiter’, Monthly Notices of the Royal Astronomical Society (1899) 59, pp. 574–584CrossRefGoogle Scholar.
63 Denning, William Frederick, ‘The rotation period of the hollow in the southern equatorial belt and of the great red spot on Jupiter’, Journal of the Royal Astronomical Society of Canada (1915) 9, pp. 333–337Google Scholar.
64 Antoniadi, Eugène Michel, ‘Sur l'accélération de la vitesse angulaire de la Tache Rougeâtre de Jupiter pendant les conjonctions avec la Grande Perturbation tempérée australe’, Astronomische Nachrichten (1913) 195, pp. 239–240Google Scholar.
65 ‘The most noteworthy incident in connection with recent studies of Jupiter is to be found in a very pronounced acceleration of motion in the great red spot … And this increase of velocity has been contemporary with the outbreak of a large, irregular or multiple marking of a dusky hue, in the same latitude of the planet … It seems a probable conjecture that the presence of the marking just referred to may have forced the red spot along at a more rapid rate than that which it exhibited in previous years’. See Denning, William Frederick, ‘Jupiter and his great red spot’, Nature (1902) 67, p. 159CrossRefGoogle Scholar.
66 ‘La poussée du courant de protubérances (actuellement, la zone grise tempérée australe) sur la Tache Rouge est donc bien sensible’. Comas i Solà, Josep, ‘Sur l'accélération de la Tache Rouge de Jupiter pendant les conjonctions avec la tache grise tempérée australe’, Astronomische Nachrichten (1913) 195, pp. 413–414CrossRefGoogle Scholar.
67 Antoniadi, Eugène Michel, ‘Jupiter’, Astronomische Nachrichten (1914) 196, pp. 339–340CrossRefGoogle Scholar.
68 Comas i Solà, Josep, ‘Jupiter’, Astronomische Nachrichten (1914) 197, pp. 165–168CrossRefGoogle Scholar.
69 The idea of situating scientists in networks of trust was developed by constructivists (although in a slightly different way to that presented here) from Collins's claims that individuals’ knowledge must be acquired by contact with the relevant community rather than by transferring programmes of instruction. See Collins, H.M., Changing Order: Replication and Induction in Scientific Practice, London: Sage, 1985, p. 159Google Scholar. For a brief historiographic introduction to constructivism and its uses in the history of science see Golinski, Jan, Making Natural Knowledge: Constructivism and the History of Science, Cambridge: Cambridge University Press, 1998Google Scholar. See also Shapin, Steven, A Social History of Truth: Civility and Science in Seventeenth-Century England, Chicago: University of Chicago Press, 1994Google Scholar.
70 Ruiz-Castell, op. cit. (16).
71 Antoniadi, Eugène Michel, ‘Jupiter’, Astronomische Nachrichten (1914) 198, pp. 45–48CrossRefGoogle Scholar.
72 See, for instance, Kostas Gavroglu, ‘Controversies and the becoming of physical chemistry’, in Peter Machamer et al. (eds.), Scientific Controversies: Philosophical and Historical Perspectives, Oxford: Oxford University Press, 2000, pp. 177–198.
73 Ruiz-Castell, op. cit. (16).
74 Gross, Alan G., ‘Do disputes over priority tell us anything about science?’, Science in Context (1998) 11, pp. 161–179CrossRefGoogle ScholarPubMed.
75 See, for example, Marcello Pera, ‘Rhetoric and scientific controversies’, in Machamer et al., op. cit. (72), pp. 50–66; and Pierluigi Barrotta, ‘Scientific dialectics in action: the case of Joseph Priestley’, in Machamer et al., op. cit. (72), pp. 153–176.