Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T00:20:22.591Z Has data issue: false hasContentIssue false

Trends and population estimate of the threatened Buff-breasted Sandpiper Calidris subruficollis wintering in coastal grasslands of southern Brazil

Published online by Cambridge University Press:  08 May 2023

Fernando A. Faria
Affiliation:
Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Campus Carreiros, 96203-900, Rio Grande, RS, Brazil Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
Rafael A. Dias
Affiliation:
Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas (UFPEL), Campus Universitário Capão do Leão s/nº, CP 354, 96010-900, Pelotas, RS, Brazil
Glayson A. Bencke
Affiliation:
Museu de Ciências Naturais, Secretaria do Meio Ambiente e Infraestrutura (SEMA), 90690-000, Porto Alegre, RS, Brazil
Leandro Bugoni
Affiliation:
Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Campus Carreiros, 96203-900, Rio Grande, RS, Brazil Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
Nathan R. Senner
Affiliation:
Department of Environmental Conservation, College of Natural Sciences, University of Massachusetts, Amherst, MA, USA
Juliana B. Almeida
Affiliation:
SAVE Brasil – Sociedade para a Conservação das Aves do Brasil, 05427-010, Pinheiros, SP, Brazil Manomet, Inc., 02360, Plymouth, MA, USA
Guilherme Tavares Nunes
Affiliation:
Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS Litoral, 95625-000, Imbé, RS, Brazil
Maycon S. S. Gonçalves
Affiliation:
Regional Centre of Water Studies, University of Castilla La Mancha, Albacete, Spain
James E. Lyons
Affiliation:
US Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, MD, USA

Summary

Information about population sizes, trends, and habitat use is key for species conservation and management. The Buff-breasted Sandpiper Calidris subruficollis (BBSA) is a long-distance migratory shorebird that breeds in the Arctic and migrates to south-eastern South America, wintering in the grasslands of southern Brazil, Uruguay, and Argentina. Most studies of Nearctic migratory species occur in the Northern Hemisphere, but monitoring these species at non-breeding areas is crucial for conservation during this phase of the annual cycle. Our first objective was to estimate trends of BBSA at four key areas in southern Brazil during the non-breeding season. We surveyed for BBSA and measured vegetation height in most years from 2008/09 to 2019/20. We used hierarchical distance sampling models in which BBSA abundance and density were modelled as a function of vegetation height and corrected for detectability. Next, we used on-the-ground surveys combined with satellite imagery and habitat classification models to estimate BBSA population size in 2019/20 at two major non-breeding areas. We found that abundance and density were negatively affected by increasing vegetation height. Abundance fluctuated five- to eight-fold over the study period, with peaks in the middle of the study (2014/15). We estimated the BBSA wintering population size as 1,201 (95% credible interval [CI]: 637–1,946) birds in Torotama Island and 2,232 (95% CI: 1,199–3,584) in Lagoa do Peixe National Park during the 2019/20 austral summer. Although no pronounced trend was detected, BBSA abundance fluctuated greatly from year to year. Our results demonstrate that only two of the four key areas hold high densities of BBSA and highlight the positive effect of short grass on BBSA numbers. Short-grass coastal habitats used by BBSA are strongly influenced by livestock grazing and climate, and are expected to shrink in size with future development and climatic changes.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarif, K. M., Nefla, A., Nasser, M., Prasadan, P. K., Athira, T. R. and Muzaffar, S. B. (2021) Multiple environmental factors and prey depletion determine declines in abundance and timing of departure in migratory shorebirds in the west coast of India. Glob. Ecol. Conserv. 26 : e01518.CrossRefGoogle Scholar
Aldabe, J., Lanctot, R. B., Blanco, D., Rocca, P. and Inchausti, P. (2019) Managing grasslands to maximize migratory shorebird use and livestock production. Rangel. Ecol. Manag. 72 : 150159.CrossRefGoogle Scholar
del Pastizal, Alianza. (2009) Relevamiento y monitoreo de sitios de importancia para chorlos de pastizal en el sur de América del Sur . Informe final del III Censo de Chorlos de Pastizales del Cono Sur de Sudamérica. Informe interno de la Alianza del Pastizal. Buenos Aires, Argentina: Aves Argentinas.Google Scholar
Almeida, J. B. (2009) Wintering ecology of Buff-breasted Sandpipers (Tryngites subruficollis) in southern Brazil. Reno, NV, USA: University of Nevada.Google Scholar
Andres, B. A., Smith, P. A., Morrison, R. I. G., Gratto-Trevor, C. L., Brown, S. C. and Friis, C. A. (2012) Population estimates of North American shorebirds, 2012. Wader Study Group Bull. 119 : 178194.Google Scholar
Azpiroz, A. B., Alfaro, M. and Jiménez, S. (2012) Lista roja de las aves del Uruguay: una evaluación del estado de conservación de la avifauna nacional con base en los criterios de la Unión Internacional para la Conservación de la Naturaleza. Montevideo, Uruguay: Dirección de Medio Ambiente.Google Scholar
Bemvenuti, C. E. and Colling, L. E. (2010) As comunidades de macroinvertebrados bentônicos. Pp. 101116 in Seeliger, U. and Odebrecht, C. eds. O estuário da Lagoa dos Patos: um século de transformações. Rio Grande, Brazil: Universidade Federal do Rio Grande.Google Scholar
Bencke, G. A., Maurício, G. N., Develey, P. F. and Goerck, J. M. (2006) Áreas importantes para a conservação das aves no Brasil. Parte I – Estados do domínio da Mata Atlântica. São Paulo, Brazil: SAVE Brasil.Google Scholar
BirdLife International (2022) Species Factsheet: Calidris subruficollis. Accessed online 07 December 2022 from http://www.birdlife.org.Google Scholar
Brubacher, J. P., Oliveira, G. G. and Guasselli, L. A. (2021) Banco de dados espacial de precipitação do estado do Rio Grande do Sul. Rev. Bras. Meteorol. 36 : 471493.CrossRefGoogle Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas, L. (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford, UK: Oxford University Press.Google Scholar
Buckland, S. T., Marsden, S. J. and Green, R. E. (2008) Estimating bird abundance: making methods work. Bird Conserv. Int. 18 : S91S108.CrossRefGoogle Scholar
Bugoni, L., Nunes, G. T., Lauxen, M. S., Gomes, C., Roos, A. L. and Serafini, P. P. (2022) Eólicas offshore no Brasil: potenciais impactos, recomendações para o licenciamento e implicações para a conservação das aves marinhas e costeiras. Pp. 137180 in Fialho, M. S. and Gomes-Filho, A. eds. Relatório de áreas de concentração de aves migratórias no Brasil. Fourth edition. Cabedelo, Brazil: Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)/Centro Nacional de Pesquisa e Conservação de Aves Silvestres (CEMAVE).Google Scholar
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical information – theoretic approach. Berlin, Germany: Springer.Google Scholar
Canham, R., Flemming, S. A., Hope, D. D. and Drever, M. C. (2021) Sandpipers go with the flow: correlations between estuarine conditions and shorebird abundance at an important stopover on the Pacific Flyway. Ecol. Evol. 11 : 28282841.CrossRefGoogle ScholarPubMed
Ciotti, A. M., Odebrecht, C., Fillmann, G. and Möller, O. (1995) Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Cont. Shelf. Res. 15 : 17371756.CrossRefGoogle Scholar
Colwell, M. A. (2010) Shorebird ecology, conservation, and management. Berkeley, CA, USA: University of California Press.CrossRefGoogle Scholar
Dias, R. A., Blanco, D. E., Goijman, A. P. and Zaccagnini, M. E. (2014) Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor 116 : 384393.CrossRefGoogle Scholar
Dias, R. A. and Burger, M. I. (2005) A assembléia de aves de áreas úmidas em dois sistemas de cultivo de arroz irrigado no extremo sul do Brasil. Ararajuba 13 : 6380.Google Scholar
Di Giacomo, A. S. and Parera, A. F. (2008) Veinte areas prioritarias para la conservación de las aves migratorias neárticas en los pastizales del cono sur de Sudamérica. Buenos Aires, Argentina: Asociación Ornitológica del Plata.Google Scholar
Epele, L. B., Grech, M. G., Williams-Subiza, E. A., Stenert, C., McLean, K., Greig, H. S., Maltchik, L., et al. (2022) Perils of life on the edge: climatic threats to global diversity patterns of wetland macroinvertebrates. Sci. Total Environ. 820 : 153052.CrossRefGoogle ScholarPubMed
Faria, F. A., Albertoni, E. F. and Bugoni, L. (2018) Trophic niches and feeding relationships of shorebirds in southern Brazil. Aquat. Ecol. 52 : 281296.CrossRefGoogle Scholar
Faria, F. A., Repenning, M., Nunes, G. T., Senner, N. R. and Bugoni, L. (2021) Breeding habitats, phenology and size of a resident population of Two-banded Plover (Charadrius falklandicus) at the northern edge of its distribution. Austral Ecol. 46 : 13111321.CrossRefGoogle Scholar
Galbraith, H., DesRochers, D. W., Brown, S. and Reed, M. (2014) Predicting vulnerabilities of North American shorebirds to climate change. PLoS One 9 : e108899.CrossRefGoogle ScholarPubMed
Galbraith, H., Jones, R., Park, R., Clough, J., Herrod-Julius, S., Harrington, B. and Page, G. (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25 : 173183.CrossRefGoogle Scholar
Garcia, C. A. E. (1998) Caraterísticas hidrográficas. Pp. 1821 in Seeliger, U., Odebrecht, C. and Castello, J. P. eds. Os ecossistemas costeiro e marinho do extremo sul do Brasil. Rio Grande, Brazil: Ecoscientia.Google Scholar
Gelman, A. and Hill, J. (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge, UK: Cambridge University Press.Google Scholar
Grimm, A. M., Ferraz, S. E. T. and Gomes, J. (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J. Clim. 11 : 28632880.2.0.CO;2>CrossRefGoogle Scholar
Horning, N., Robinson, J. A., Sterling, E. J., Turner, W. and Spector, S. (2010) Remote sensing for ecology and conservation: a handbook of techniques. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Immordino, F., Barsanti, M., Candigliota, E., Cocito, S., Delbono, I. and Peirano, A. (2019) Application of Sentinel-2 multispectral data for habitat mapping of Pacific Islands: Palau Republic (Micronesia, Pacific Ocean). J. Mar. Sci. Eng. 7 : 316.CrossRefGoogle Scholar
Isacch, J. P. and Martínez, M. M. (2003) Habitat use by non-breeding shorebirds in flooding Pampas grasslands of Argentina. Waterbirds 26 : 494500.CrossRefGoogle Scholar
Kellner, K. (2016) jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. Version 1.4.2.Google Scholar
Kéry, M., Dorazio, R. M., Soldaat, L., van Strien, A., Zuiderwijk, A. and Royle, J. A. (2009) Trend estimation in populations with imperfect detection. J. Appl. Ecol. 46 : 11631172.CrossRefGoogle Scholar
Kéry, M. and Royle, J. A. (2016) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS. London, UK: Academic Press.Google Scholar
Kéry, M. and Schmid, H. (2004) Monitoring programs need to take into account imperfect species detectability. Basic Appl. Ecol. 5 : 6573.CrossRefGoogle Scholar
Kirby, J. S., Stattersfield, A. J., Butchart, S. H. M., Evans, M. I., Grimmet, R. F. A., Jones, V. R., O’Sullivan, J., et al. (2008) Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv. Int. 18 : S49S73.CrossRefGoogle Scholar
Klein, A. H. F. (1998) Clima regional. Pp. 57 in Seeliger, U., Odebrecht, C. and Castello, J. P. eds. Os ecossistemas costeiro e marinho do extremo sul do Brasil. Rio Grande, Brazil: Editora Ecoscientia.Google Scholar
Lanctot, R. B., Aldabe, J., Almeida, J. B., Blanco, D., Isacch, J. P., Jorgensen, J., Norland, S., et al. (2010) Conservation plan for the Buff-breasted Sandpiper (Tryngites subruficollis). Version 1.1. Anchorage, AK, USA: US Fish and Wildlife Service/Manomet, MA, USA: Manomet Center for Conservation Sciences.Google Scholar
Lanctot, R. B., Blanco, D. E., Dias, R. A., Isacch, J. P., Verena, A. G., Almeida, J. A., Delhey, K., et al. (2002) Conservation status of the Buff-breasted Sandpiper: historic and contemporary distribution and abundance in South America. Wilson Bull. 114 : 4472.CrossRefGoogle Scholar
Lanctot, R. B., Yezerinac, S., Aldabe, J., Almeida, J. B., Castresana, G., Brown, S., Rocca, P., et al. (2016) Light-level geolocation reveals migration patterns of the Buff-breasted Sandpiper. Wader Study Group Bull. 123 : 2943.CrossRefGoogle Scholar
Link, W. A. and Barker, R. J. (2010) Bayesian inference: with ecological applications. First edition. Amsterdam, The Netherlands: Elsevier.Google Scholar
Lounsberry, Z. T., Almeida, J. B., Grace, T., Lanctot, R. B., Liebezeit, J., Sandercock, B. K., Strum, K. M., et al. (2013) Range-wide conservation genetics of Buff-breasted Sandpipers (Tryngites subruficollis). Auk 130 : 429439.CrossRefGoogle Scholar
Lounsberry, Z. T., Almeida, J. B., Lanctot, R. B., Liebezeit, J. R., Sandercock, B. K., Strum, K. M., Zack, S., et al. (2014) Museum collections reveal that Buff-breasted Sandpipers (Calidris subruficollis) maintained mtDNA variability despite large population declines during the past 135 years. Conserv. Genet. 15 : 11971208.CrossRefGoogle Scholar
Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., et al. (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22 : 14241442.CrossRefGoogle ScholarPubMed
Marangoni, J. C. and Costa, C. S. B. (2009) Diagnóstico ambiental das marismas no estuário da Lagoa dos Patos - RS. Atlântica 31 : 8598.CrossRefGoogle Scholar
McCarty, J. P., Wolfenbarger, L. L., Laredo, C. D., Pyle, P. and Lanctot, R. B. (2020) Buff-breasted Sandpiper (Calidris subruficollis). In Rodewald, P. G. ed. Birds of the world. Ithaca, NY, USA: Cornell Lab of Ornithology.Google Scholar
McKinnon, L., Bertreaux, D. and Bêty, J. (2014) Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131 : 619628.CrossRefGoogle Scholar
Ministério do Meio Ambiente. (2022) Portaria MMA n° 148, 07 June 2022. Diário Oficial da União. Edição 108, Seção 1. Brasília, Brazil: ICMBIO/MMA.Google Scholar
Nascimento, I. L. S. (1995) As aves do Parque Nacional da Lagoa do Peixe. Brasília, Brazil: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Reno-váveis (IBAMA).Google Scholar
Nogueira, R. X. S. and Costa, C. S. B. (2003) Mapeamento das marismas do estuário da Lagoa dos Patos (RS) utilizando fotografias aéreas digitais 35 mm no modo infravermelho. In Congresso da Associação Brasileira de Estudos do Quartenário-ABEQUA, Recife, Brazil.Google Scholar
Plummer, M. (2003) Jags: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) March 20–22, Vienna, Austria. Available at https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf.Google Scholar
Ramsar Convention Secretariat. (2016) An introduction to the Ramsar Convention on wetlands. Seventh edition. (previously The Ramsar Convention manual). Gland, Switzerland: Ramsar Convention Secretariat,. Available at https://www.ramsar.org/sites/default/files/documents/library/handbook1_5ed_introductiontoconvention_final_e.pdf.Google Scholar
R Core Team (2020) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., et al. (2019) Decline of the North American avifauna. Science 366 : 120124.CrossRefGoogle ScholarPubMed
Royle, J. A., Dawson, D. K. and Bates, S. (2004) Modelling abundance effects in Distance Sampling. Ecology 85 : 15911597.CrossRefGoogle Scholar
Schuerch, M., Vafeidis, A., Slawig, T. and Temmerman, S. (2013) Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118 : 8496.CrossRefGoogle Scholar
Simmons, R. E., Kolberg, H., Braby, R. and Erni, B. (2015) Declines in migrant shorebird populations from a winter-quarter perspective. Conserv. Biol. 29 : 877887.CrossRefGoogle ScholarPubMed
Sillett, T. S., Chandler, R. B., Royle, J. A., Kéry, M. and Morrison, S. A. (2012) Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecol. Appl. 22: 19972006.CrossRefGoogle ScholarPubMed
Smith, P. A., McKinnon, L., Meltofte, H., Lanctot, R. L., Fox, A. D., Leafloor, J. O., Soloviev, M., et al. (2020) Status and trends of tundra birds across the circumpolar Arctic. Ambio 49 : 732748.CrossRefGoogle ScholarPubMed
Souza, C. M. Jr, Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., et al. (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sens. 12 : 2735.CrossRefGoogle Scholar
Stratoulias, D., Balzter, H., Sykioti, O., Zlinszky, A. and Tóth, V. R. (2015) Evaluating Sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data. Sensors 9 : 2295622969.CrossRefGoogle Scholar
Sverdrup, K. A., Duxbury, A. C. and Duxbury, A. B. (2005) An introduction to the world’s oceans. New York, USA: McGraw-Hill.Google Scholar
Thaxter, C. B., Buchanan, G. M., Carr, J., Butchart, S. H. M., Newbold, T., Green, R. E., Tobias, J. A., et al. (2017) Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. Lond. B. Biol. Sci. 284 : 20170829.Google ScholarPubMed
Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., et al. (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47 : 514.CrossRefGoogle ScholarPubMed
Tomazelli, L. J., Dillenburg, S. R. and Villwock, J. A. (2000) Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Rev. Bras. Geocienc. 30 : 474476.CrossRefGoogle Scholar
Underhill, L. G., Prys-Jones, R. P., Syroechkovski, E. E., Groen, N. M., Karpov, V., Lappo, H. G., Vanroomer, M. W. J., et al. (1993) Breeding of waders (Charadrii) and Brent Geese Branta bernicla bernicla at Pronchishcheva Lake, Northeastern Taimyr, Russia, in a peak and a decreasing lemming year. Ibis 135 : 277292.CrossRefGoogle Scholar
Wang, X., Chen, Y., Melville, D. S., Chi-Yeung, C., Kun, T., Liu, J., Li, J., et al. (2022) Impacts of habitat loss on migratory shorebird populations and communities at stopover sites in the Yellow Sea. Biol. Conserv. 269 : 109547.CrossRefGoogle Scholar
Warnock, N., Jennings, S., Kelly, J. P., Condeso, T. E. and Limpkin, D. (2021) Declining wintering shorebird populations at a temperate estuary in California: a 30-year perspective. Ornithol. Appl. 123 : duaa060.Google Scholar
Weiser, E. L., Lanctot, R. B., Brown, S. C., Gates, H. R., Bêty, J., Boldenow, M. L., Brook, R. W., et al. (2020) Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor 122 : 114.CrossRefGoogle Scholar
WHSRN. (2020) Lagoa do Peixe – About Us. Western Hemisphere Shorebird Reserve Network. Available at http://www.whsrn.org/site-profile/lagoa-do-peixe.Google Scholar
Wiest, W. A., Correll, M. D., Olsen, B. J., Elphick, C. S., Hodgman, T. P., Curson, D. R. and Shriver, W. G. (2016) Population estimates for tidal marsh birds of high conservation concern in the northeastern USA from a design-based survey. Condor 118 : 274288.CrossRefGoogle Scholar
Wilson, J. D., Anderson, R., Bailey, S., Chetcuti, J., Cowie, N. R., Hancock, M. H., Quine, C. P., et al. (2014) Modelling edge effects of mature forest plantations on peatland waders informs landscape-scale conservation. J. Appl. Ecol. 51 : 204213.CrossRefGoogle Scholar
Supplementary material: File

Faria et al. supplementary material

Tables S1-S2 and Figure S1

Download Faria et al. supplementary material(File)
File 42.8 KB