Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T12:30:31.296Z Has data issue: false hasContentIssue false

The neural correlates of semantic and phonological transfer effects: language distance matters

Published online by Cambridge University Press:  15 June 2016

LADAN GHAZI-SAIDI*
Affiliation:
Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal Biomedical Sciences, Faculty of Medicine, University of Montreal
ANA INÉS ANSALDO
Affiliation:
Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal Speech-Language Pathology and Audiology School, Faculty of Medicine, Université de Montréal
*
Address for correspondence: Ladan Ghazi-Saidi, 4565 Queen-Mary Road, Montreal, Quebec, H3W 1W5, Canadaladan.ghazi.saidi@umontreal.ca

Abstract

Behavioral and neural correlates of cross-linguistic transfer (CLT) effects were studied at the word level, in a pair of linguistically distant languages. Twelve adult Persian speakers were tested on an overt picture-naming task in L2, during event-related fMRI scanning after an intensive computerized French lexical-learning program including cognates, clangs and non-cognate-non-clangs.

In distant language pairs, naming in L2 is effortful and demanding. Thus, it is less automatic, and must recruit more neural resources for lexical retrieval, and articulatory processing; it also requires more attention and cognitive control, even in cases where there is phonological overlap. Activation observed with different word types reflects the interaction of language and other cognitive systems including executive control and working memory circuits, even with phonologically similar and highly consolidated words. Moreover, phonologically similar words (cognates and clangs) seem to involve the implicit memory processing, whereas phonologically distant words (non-cognate-non-clangs) seem to require explicit memory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J., & Green, D. W. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurology, 20, 242275.Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., Cappa, S., & Costa, A. (2011). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, bhr287.Google Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49 (3), 905911.Google Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and cognition, 110.Google Scholar
Aitchison, J. (1999). Linguistics. London: Teach Yourself Books.Google Scholar
Albert, M. L., & Obler, L. K. (1978). Neuropsychological and neurolinguistic aspects of bilingualism. London: Academic Press.Google Scholar
Ansaldo, A. I., Marcotte, K., Scherer, L., & Raboyeau, G. (2008). Language therapy and bilingual aphasia: Clinical implications of psycholinguistic and neuroimaging research. Journal of Neurolinguistics, 21 (6), 539557.Google Scholar
Antón-Méndez, I., & Gollan, T. H. (2010). Not just semantics: Strong frequency and weak cognate effects on semantic association in bilinguals. Memory and Cognition, 38, 723739.Google Scholar
Beauchemin, M. J., Arguin, M., & Desmarais, G. (1996, February). A stroop effect in the visuospatial domain. In Investigative Ophthalmology & Visual Science (vol. 37, no. 3, pp. 24332433). 227 East Washington sq, Philadelphia, PA 19106: Lippincott-raven publ.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17 (1), 353362.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological review, 108 (3), 624.Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences, 8 (12), 539546.Google Scholar
Buschke, H. (1984). Cued recall in amnesia. Journal of Clinical and Experimental Neuropsychology, 6, 433440.CrossRefGoogle ScholarPubMed
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 134.Google Scholar
Chee, M. W., Lee, H. L., Soon, C. S., Westphal, C., & Venkatraman, V. (2003a). Reproducibility of the word frequency effect: Comparison of signal change and voxel counting. NeuroImage, 18, 468482.Google Scholar
Chee, M. W., Westphal, C., Goh, J., Graham, S., & Song, A. W. (2003b). Word frequency and subsequent memory effects studied using event-related fMRI. NeuroImage, 202, 10421051.Google Scholar
Christoffels, I. K., Firk, C., & Schiller, N. O. (2007). Bilingual language control: An event-related brain potential study. Brain Research, 1147, 192208.Google Scholar
Colomé, A., & Miozzo, M. (2010). Which words are activated during bilingual word production? Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 96109.Google Scholar
Costa, A., Caramazza, A., & Sebastián-Gallés, N. (2000). The cognate facilitation effect: Implications for models of lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 12831296.Google Scholar
Costa, A., Santesteban, M., & Caño, A. (2005). On the facilitatory effects of cognate words in bilingual speech production. Brain and Language, 94, 94103.Google Scholar
Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Aso, T., Urayama, S., Fukuyama, H., Stockton, K. and Usui, K., (2006). Language control in the bilingual brain, Science, 312, 15371540.Google Scholar
De Bleser, R., Dupont, P., Bormans, G., & Speelman, D. (2003). The organization of the bilingual lexicon: A PET study. Journal of Neurolinguistics, 16, 439456.Google Scholar
De Groot, A. M. B., & Nas, G. L. (1991). Lexical representation of cognates and noncognates in compound bilinguals. Journal of Memory and Language, 30, 90123.Google Scholar
De Groot, A. M., & Poot, R. (1997). Word translation at three levels of proficiency: The ubiquitous involvement of conceptual memory. Language Learning, 47, 215264.Google Scholar
Dijkstra, T., Grainger, J., & Van Heuven, W. J. B. (1999a). Recognition of cognates and interlingual homographs: The neglected role of phonology. Journal of Memory and Language, 41, 496518.Google Scholar
Dijkstra, T., & Van Hell, J. (2001) Testing the language mode hypothesis using trilinguals. Paper presented at the 2nd International Conference on Third Language Acquisition and Trilingualism, Fryske Academy.Google Scholar
Duñabeitia, J. A., Perea, M., & Carreiras, M. (2010) Masked translation priming effects with highly proficient simultaneous bilinguals. Experimental Psychology, 57, 98107.Google Scholar
Edmonds, L. A., & Kiran, S. (2006). Effect of semantic naming treatment on cross-linguistic generalization in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 49, 729748.Google Scholar
Elston-Guttler, K. E., Paulmann, S., & Kotz, S. A. (2005). Who's in control? Proficiency and L1 influence on L2 processing. Journal of Cognitive Neuroscience, 17, 15931610.Google Scholar
Finch, G. (2005). Key concepts in language and linguistics (2nd ed.). Basingstoke, UK: Palgrave Macmillan.Google Scholar
Flege, J. E. (1999). Age of learning and second language speech. In Birdsong, D. (Ed.), Second language acquisition and the critical period hypothesis (pp. 101131). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Francis, W. S (1999). Cognitive integration of language and memory in bilinguals: Semantic representation. Psychology Bulletin, 125, 193222.Google Scholar
Friederici, A. D. (2006). The neural basis of language development and its impairment. Neuron, 52, 941952.Google Scholar
Garcia-Albea, J. E., Sanchez-Casas, R., & Valero, T. (1996). Form and meaning contribution to word recognition in Catalan–Spanish bilinguals. Paper presented to the IX conference of the European society for cognitive psychology, Wurzburg, Germany.Google Scholar
Gerard, L., & Scarborough, D. L. (1989). Language-specific lexical access of homographs by bilinguals: Evidence from masked non-word priming. Quarterly Journal of Experimental Psychology, 45A, 353372.Google Scholar
Ghazi-Saidi, L. (2012). Cross-linguistic transfer (CLT) in bilingual speakers: Neural correlates of language learning. PhD dissertation, Université de Montréal, Montreal, QC.Google Scholar
Ghazi-Saidi, L., Perlbarg, V., Marrelec, G., Pélégrini-Issac, M., Benali, H., & Ansaldo, A. I. (2013). Functional connectivity changes in second language vocabulary learning. Brain and language, 124 (1), 5665.Google Scholar
Ghazi-Saidi, L., Dash, T., & Ansaldo, A. I. (2015). How native-like can you possibly get: fMRI evidence for processing accent. Frontiers in human neuroscience, 9.Google Scholar
Gildersleeve-Neumann, C. E., & Wright, K. L. (2010). English speech acquisition in 3- to 5-year-old children learning Russian and English. Language Speech Hearing Services in Schools, 41, 429444.Google Scholar
Goghari, V. M., & MacDonald, A. (2009). The neural basis of cognitive control: Response selection and inhibition. Brain and Cognition, 71, 7283.Google Scholar
Gollan, T. H., & Acenas, L. A. (2004). What is a TOT? Cognate and translation effects on tip-of-the-tongue States in Spanish–English and Tagalog–English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 246269.Google Scholar
Gollan, T. H., Forster, K. I., & Frost, R. (1997). Translation priming with different scripts: Masked priming with cognates and noncognates in Hebrew-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 11221139.Google Scholar
Gollan, T. H., & Silverberg, N. B. (2001). Tip-of-the-tongue states in Hebrew–English bilinguals. Bilingualism: language and cognition, 4 (01), 6383.Google Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25 (5), 515530.Google Scholar
Grober, E., Buschke, H., Crystal, H., Bang, S., & Dresner, R. (1988). Screening for dementia by memory testing. Neurology, 38 (6), 900.Google Scholar
Hacohen, A., & Schaeffer, J. (2007). Subject realization in early Hebrew/English bilingual acquisition: The role of cross-linguistic influence. Bilingualism: Language and Cognition, 10, 333344.Google Scholar
Harley, T. A., & Brown, H. E. (1998). What causes a tip-of-the-tongue state? Evidence for lexical neighbourhood effects in speech production. British Journal of Psychology, 89, 151174.Google Scholar
Haznedar, B. (2007). Crosslinguistic influence in Turkish-English bilingual first language acquisition: The overuse of subjects in Turkish. In Belikova, A. (Ed.), Proceedings of the 2nd Conference on Generative Approaches to Language Acquisition North America (GALANA) (pp. 124134). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44, 25472557.Google Scholar
Hoshino, N., & Kroll, J. F. (2008). Cognate effects in picture naming: Does cross-language activation survive a change of script? Cognition, 106, 501511.Google Scholar
Humphreys, K. R., Boyd, C. H., & Watter, S. (2010). Phonological facilitation from pictures in a word association task: Evidence for routine cascaded processing in spoken word production. Quarterly Journal of Experimental Psychology, 63, 22892296.Google Scholar
Indefrey, P., & Levelt, W. J. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101144.Google Scholar
Insausti, R., Amaral, D. G., & Cowan, W. M. (1987). The entorhinal cortex of the monkey: Cortical afferents. Journal of Computational Neurology, 264, 356395.Google Scholar
Kohnert, K. (2004). Cognitive and cognate-based treatments for bilingual aphasia: A case study. Brain and Language, 91, 294302.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of memory and language, 33 (2), 149174.Google Scholar
Kroll, J. F., Michael, E., Tokowicz, N., & Dufour, R. (2002). The development of lexical fluency in a second language. Second Language Research, 18, 137171.Google Scholar
Kuhl, P., & Rivera-Gaxiola, M. (2008). Neural substrates of language acquisition. Annu. Rev. Neurosci., 31, 511534.Google Scholar
Lalor, E., & Kirsner, K. (2001). The representation of “false cognates” in the bilingual lexicon. Psychonomic Bulletin and Review, 8, 552559.Google Scholar
Lemhofer, K., & Dijkstra, T. (2004). Recognizing cognates and interlingual homographs: Effects of code similarity in language specific and generalized lexical decision. Memory and Cognition, 32, 533550.Google Scholar
Levy, D. A., Bayley, P. J., & Squire, L. R. (2004). The anatomy of semantic knowledge: medial vs. lateral temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 101 (17), 67106715.Google Scholar
Marcotte, K., & Ansaldo, A. I. (2014). Age-related behavioural and neurofunctional patterns of second language word learning: different ways of being successful. Brain and language, 135, 919.Google Scholar
Marian, V, Blumenfeld, H. K., & Boukrina, O. V. (2008). Sensitivity to phonological similarity within and across languages. Journal of Psycholinguistic Research, 37, 141170.Google Scholar
Marian, V., Spivey, M., & Hirsch, J. (2010). Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain and Language, 86, 7082.Google Scholar
McCarthy, W. E. (1999). Semantic modeling in accounting education, practice, and research: Some progress and impediments. In Conceptual Modeling (pp. 144153). Springer Berlin Heidelberg.Google Scholar
Meinzer, M., Obleser, J., Flaisch, T., Eulitz, C., & Rockstroh, B. (2007). Recovery from aphasia as a function of language therapy in an early bilingual patient demonstrated by fMRI. Neuropsychologia, 45, 12471256.Google Scholar
Mufson, E. J., & Pandya, D. N. (1984). Some observations on the course and composition of the cingulum bundle in the rhesus monkey. Journal of Computational Neurology, 225, 3143.Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695699.Google Scholar
Nilipour, R., & Raghibdoust, S. (2001). Manifestations of aphasia in Persian. Journal of Neurolinguistics, 14, 209230.CrossRefGoogle Scholar
Odlin, T. (1989). Language transfer: Cross-linguistic influence in language learning. New York: Cambridge University Press.CrossRefGoogle Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9 (1), 97113.Google Scholar
Ota, M., Hartsuiker, R. J., & Haywood, S. L. (2010). Is a FAN always FUN? Phonological and orthographic effects in bilingual visual word recognition. Language and Speech, 53, 383403.Google Scholar
Paradis, M., & Libben, G. (1987). The assessment of bilingual aphasia. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Paradis, M. (2004). A neurolinguistic theory of bilingualism (Vol. 18). John Benjamins Publishing.Google Scholar
Parkin, A. I. (2001). The structure and mechanisms of memory. In Rapp, B. (Ed.), The handbook of cognitive neuropsychology: What deficits reveal about the human mind (pp. 399420). Philadelphia, PA: Psychology Press.Google Scholar
Perani, D., Paulesu, E., Galles, N., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Price, C.J., Green, D.W., & von Studnitz, R. (1999). A functional imaging study of translation and language switching. Brain, 122, 22212235.CrossRefGoogle ScholarPubMed
Raboyeau, G., Marcotte, K., Adrover-Roig, D., & Ansaldo, A. I. (2010). Brain activation and lexical learning: The impact of learning phase and word type. NeuroImage, 49, 28502861.Google Scholar
Raboyeau, G., Marie, N., Balduyck, S., Gros, H., Demonet, J. F., & Cardebat, D. (2004). Lexical learning of the English language: A PET study in healthy French subjects. NeuroImage, 22, 18081818.Google Scholar
Ringbom, H. (2007). Cross-linguistic similarity in foreign language learning. Clevedon, UK: Multilingual Matters Ltd. Google Scholar
Roberts, P. M., & Deslauriers, L. (1999). Picture naming of cognate and non-cognate nouns in bilingual aphasia. Journal of Communication Disorders, 32, 122.Google Scholar
Robinson, G., Blair, J., & Cipolotti, L. (1998). Dynamic aphasia: an inability to select between competing verbal responses? Brain, 121 (1), 7789.Google Scholar
Rüschemeyer, S.-A., Fiebach, C., Kempe, V., & Friederici, A. (2005). Processing lexical semantic and syntactic information in first and second language: fMRI evidence from Russian and German. Human Brain Mapping, 25, 266286.Google Scholar
Rüschemeyer, S.-A., Zysset, S., & Friederici, A. D. (2006). Native and non-native reading of sentences: An fMRI experiment. NeuroImage, 31, 354365.Google Scholar
Schelletter, C. (2002). The effect of form similarity on bilingual children's lexical development. Bilingualism: Language and Cognition, 5, 93107.Google Scholar
Schulpen, B., Dijkstra, T., Schriefers, H. J., & Hasper, M. (2003). Recognition of interlingual homophones in bilingual auditory word recognition. Journal of Experimental Psychology: Human Perception and Performance, 29 (6), 1155.Google Scholar
Schumann, J. H., Crowell, S. E., Jones, N. E., & Lee, N. (2004). The neurobiology of learning: Perspectives from second language acquisition. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Segalowitz, N. (1976). Communicative incompetence and the non-fluent bilingual. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 8 (2), 122.Google Scholar
Silverberg, S., & Samuel, A. G. (2004). The effect of age of second language acquisition on the representation and processing of second language words. Journal of Memory and Language, 51, 381398.Google Scholar
Singleton, D., & Little, D. (1991). The second language lexicon: Some evidence from university-level learners of French and German. Second Language Research, 7, 6181.Google Scholar
Smith, M. S. (1983). Cross-linguistic aspects of second language acquisition. Applied Linguistics, 4, 192199.Google Scholar
Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Journal of Computational Neurology, 350, 497533.Google Scholar
Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex, in retrieval of semantic knowledge: A re-evaluation. Proceedings of the National Academy of Sciences of the United States of America, 94, 1479214797.Google Scholar
Thompson-Schill, S. L., Jonides, J., Marshuetz, C., Smith, E. E., D'Esposito, M., Kan, I. P., Knight, R. T., & Swick, D. (2002). Effects of frontal lobe damage on interference effects in working memory. Cognitive, Affective and Behavioral Neuroscience, 2, 109120.Google Scholar
Thompson-Schill, S. L., Swick, D., Farah, M. J., D'Esposito, M., Kan, I. R., & Knight, R. T. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Sciences of the United States of America, 95, 1585515860.CrossRefGoogle ScholarPubMed
Tippett, L. J., Gendall, A., Farah, M. J., & Thompson-Schill, S. L. (2004). Selection ability in Alzheimer's disease: Investigation of a component of semantic processing. Neuropsychology, 18, 163173.Google Scholar
Titone, D., Libben, M., Mercier, J., Whitford, V., & Pivneva, I. (2011) Bilingual lexical access during L1 sentence reading: The effects of L2 knowledge, semantic constraint, and L1-L2 intermixing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 14121431.Google Scholar
Van Assche, E., Duyck, W., Hartsuiker, R. J., & Diependaele, K. (2009). Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychological Science, 20, 923927.Google Scholar
Van Hell, J. G., & De Groot, A. M. B. (1998). Conceptual representation in bilingual memory: Effects of concreteness and cognate status in word association. Bilingualism, 1, 193211.Google Scholar
Van Hoesen, G. W. (1982). The parahippocampal gyrus: New observations regarding its cortical connections in the monkey. Trends in Neuroscience, 5, 345350.Google Scholar
Vitali, P., Abutalebi, J., Tettamanti, M., Danna, M., Ansaldo, A. I., Perani, D., Johanette, Y., & Cappa, S. F. (2007). Training-induced interhemispheric remapping in aphasia. Neurorehabilitation and Neural Repair, 21, 152160.Google Scholar
Vitevitch, M. S., & Sommers, M. S. (2003). The facilitatory influence of phonological similarity and neighbourhood frequency in speech production in younger and older adults. Memory and Cognition, 31, 491504.Google Scholar
Voga, M., & Grainger, J. (2007). Cognate status and cross-script translation priming. Memory and Cognition, 35, 938952.Google Scholar
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 9, 159170.Google Scholar
Yudes, C., Macizo, P., & Bajo, T. (2010). Cognate effects in bilingual language comprehension tasks. NeuroReport, 21, 507512.Google Scholar