Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T09:13:50.794Z Has data issue: false hasContentIssue false

Semantic relatedness and first-second language effects in the bilingual brain: a brain mapping study*

Published online by Cambridge University Press:  29 April 2015

ASAID KHATEB*
Affiliation:
The Neurocognitive Lab for the Study of Bilingualism, E.J. Safra Brain Research Center, Faculty of Education, University of Haifa, Israel Lab of Exp Neuropsychol, Neurology Dept, University Hospitals, Geneva, Switzerland
ALAN J. PEGNA
Affiliation:
Lab of Exp Neuropsychol, Neurology Dept, University Hospitals, Geneva, Switzerland
CHRISTOPH M. MICHEL
Affiliation:
Fundamental Neurosci Dept, Faculty of Medicine, Geneva University, Switzerland
MICHAËL MOUTHON
Affiliation:
Lab Cognition & Neurological Sciences, Medicine Dept, Faculty of Sciences, University of Fribourg, Switzerland
JEAN-MARIE ANNONI
Affiliation:
Lab Cognition & Neurological Sciences, Medicine Dept, Faculty of Sciences, University of Fribourg, Switzerland
*
Address for correspondence: Professor Asaid Khateb E.J. Safra Brain Research Center for the Study of Learning Disabilities Faculty of Education University of Haifa, 3498838Israelakhateb@edu.haifa.ac.il

Abstract

Behavioural studies investigating word processing in bilinguals generally report faster response times (RTs) for first (L1) than for second (L2) language words. To examine the locus of this language effect, this study used behavioural data and event-related potentials (ERPs) collected from bilinguals while performing a semantic categorisation task on visual word pairs. RTs revealed both language and semantic relatedness effects. Spatio-temporal analysis of ERP map series showed that the semantic effect was explained by a condition-specific map segment occurring during the N400 component. The language effect was primarily explained by a map segment that started at ~170 ms and covered the period of the P2 component, that was longer in L2 than in L1 and whose duration correlated with RTs. Source localisation showed that this early segment involved the bilateral occipito-temporal regions including the fusiform area. These findings indicate that ERPs differentiated L1 and L2 during early word recognition steps.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This research was supported by the Swiss National Science Foundation (grants no 325100–118362) and the Israeli Science Foundation (grant no 623/11). The Cartool software (brainmapping.unige.ch/cartool) has been programmed by Denis Brunet, supported by the Center for Biomedical Imaging (CIBM) of Geneva and Lausanne. We thank Drs Rolando Grave de Peralta Menedez and Sara Gonzales Andino for the inverse solutions, Miss Laurie Handelman for her help in English editing and all the bilingual participants for their invaluable collaboration.

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica (Amst). 128, 466478.Google Scholar
Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., Lazeyras, F., Cappa, S., & Khateb, A. (2008). Language control and lexical competition in bilinguals: an event-related FMRI study. Cerebral Cortex, 18, 14961505.Google Scholar
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.Google Scholar
Alvarez, R. P., Holcomb, P. J., & Grainger, J. (2003). Accessing word meaning in two languages: an event-related brain potential study of beginning bilinguals. Brain and Language, 87, 290304.Google Scholar
Andrade, G.N., Butler, J.S., Mercier, M.R., Molholm, S., & Foxe, J.J. (2015). Spatio-temporal dynamics of adaptation in the human visual system: a high-density electrical mapping study. European Journal of Neuroscience, doi:10.1111/ejn.12849.Google Scholar
Ardal, S., Donald, M. W., Meuter, R., Muldrew, S., & Luce, M. (1990). Brain responses to semantic incongruity in bilinguals. Brain and Language, 39, 187205.Google Scholar
Barber, H., Vergara, M., & Carreiras, M. (2004). Syllable-frequency effects in visual word recognition: evidence from ERPs. Neuroreport, 15, 545548.Google Scholar
Bar-Kochva, I., & Breznitz, Z. (2012). Does the reading of different orthographies produce distinct brain activity patterns? An ERP study. PLoS One 7, doi:10.1371/journal.pone.0036030.Google Scholar
Barrett, S. E., & Rugg, M. D. (1989). Event-related potentials and the semantic matching of faces. Neuropsychologia, 27, 913922.Google Scholar
Barrett, S. E., & Rugg, M. D. (1990). Event-related potentials and the semantic matching of pictures. Brain and Cognition, 14, 201212.Google Scholar
Baayen, R. H., Piepenbrock, R., & Van Rijn, H. The CELEX lexical database, 1993. Linguistic Data Consortium, University of Pennsylvania, Philadelphia.Google Scholar
Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60, 343355.Google Scholar
Boddy, J., & Weinberg, H. (1981). Brain potentials, perceptual mechanisms and semantic categorisation. Biological Psychology, 12 (1), 4361.CrossRefGoogle ScholarPubMed
Brandeis, D., Lehmann, D., Michel, C. M., & Mingrone, W. (1995). Mapping event-related brain potential microstates to sentence endings. Brain Topography, 8, 145159.Google Scholar
Brandeis, D., Naylor, H., Halliday, R., Callaway, E., & Yano, L. (1992). Scopolamine effects on visual information processing, attention and event-related potential map latencies. Psychophysiology, 29, 315336.CrossRefGoogle ScholarPubMed
Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, 2011, 813870.Google Scholar
Cappe, C., Thut, G., Romei, V., & Murray, M. M. (2010). Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources. Journal of Neuroscience, 30, 1257212580.Google Scholar
Chauncey, K., Grainger, J., & Holcomb, P. J. (2008). Code-switching effects in bilingual word recognition: a masked priming study with event-related potentials. Brain and Language, 105, 161174.Google Scholar
Chee, M. W., Hon, N., Lee, H. L., & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. Blood oxygen level dependent. Neuroimage, 13, 11551163.CrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123, 291307.Google Scholar
Collins, A., & Loftus, E. (1975). A spreading activation theory of semantic processing. Psychological Review, 82, 407429.Google Scholar
De Groot, A. M. B. (1984). Primed lexical decision: Combined effects of the proportion of related prime–target pairs and the stimulus onset asynchrony of prime and target. Quarterly Journal of Experimental Psychology, 253280.CrossRefGoogle Scholar
de Groot, A. M. B., & Nas, G. L. J. (1991). Lexical representation of cognates and noncognates in compound bilinguals. Journal of Memory and Language 30, 90123.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., van de Moortele, P.F., Lehéricy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8 (17), 38093815.Google Scholar
Déjerine, J. (1892). Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Mémoires de la Société de Biologie, 4, 6190.Google Scholar
Dijkstra, T., & van Heuven, W. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5, 175197.Google Scholar
Dubois, D., & Poitou, J. (2002). Normes catégorielles pour vingt-deux catégories sémantiques en français et dix catégories en allemand. Cahiers du LCPE, Paris 5, 35118.Google Scholar
Dufour, R., & Kroll, J. F. (1995). Matching words to concepts in two languages: a test of the concept mediation model of bilingual representation. Memory and Cognition, 23, 166180.Google Scholar
Duyck, W., Vanderelst, D., Desmet, T., & Hartsuiker, R. J. (2008). The frequency effect in second-language visual word recognition. Psychonomic Bulletin and Review, 15, 850855.Google Scholar
Elston-Güttler, K. E., Paulmann, S., & Kotz, S. A. (2005). Who's in control? Proficiency and L1 influence on L2 processing. Journal of Cognitive Neuroscience, 17, 15931610.Google Scholar
Francis, W. S. (1999). Cognitive integration of language and memory in bilinguals: semantic representation. Psychological Bulletin, 125, 193222.Google Scholar
Gallagher, A., Béland, R., Vannasing, P., Bringas, M. L., Sosa, P. V., Trujillo-Barreto, N. J., Connolly, J., & Lassonde, M. (2014). Dissociation of the N400 component between linguistic and non-linguistic processing: A source analysis study. World Journal of Neuroscience, 4, 25.Google Scholar
Geukes, S., Huster, R. J., Wollbrink, A., Junghofer, M., Zwitserlood, P., & Dobel, C. (2013). A Large N400 but No BOLD Effect - Comparing Source Activations of Semantic Priming in Simultaneous EEG-fMRI. PLoS One, 8, 2013.CrossRefGoogle ScholarPubMed
Gollan, T., & Kroll, J. (2001). Lexical access in bilinguals. In Rapp, B. (Ed.), A handbook of cognitive neuropsychology: what deficits reveal about the human mind (pp. 321345). New York: Psychology Press.Google Scholar
Gollan, T. H., Forster, K. I., & Frost, R. (1997). Translation priming with different scripts: masked priming with cognates and noncognates in Hebrew-English bilinguals. Journal of Experimental Psychology: Learning, Memory and Cognition, 23 (5), 11221139.Google Scholar
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58, 787814.Google Scholar
Grainger, J., & Beauvillain, C. (1988). Associative priming in bilinguals: Some limits of interlingual facilitation effects. Canadian Journal of Psychology, 42, 261273.Google Scholar
Grave de Peralta Menedez, R., Gonzalez Andino, S., Lantz, G., Michel, C. M., & Landis, T. (2001). Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations. Brain Topography, 14, 131137.Google Scholar
Halgren, E., Dhond, R. P., Christensen, N., Van Petten, C., Marinkovic, K., Lewine, J. D., & Dale, A.M. (2002). N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage, 17, 11011116.Google Scholar
Hauk, O., Patterson, K., Woollams, A., Watling, L., Pulvermuller, F., & Rogers, T. T. (2006). [Q:] When would you prefer a SOSSAGE to a SAUSAGE? [A:] At about 100 msec. ERP correlates of orthographic typicality and lexicality in written word recognition. Journal of Cognitive Neuroscience, 18, 818832.Google Scholar
Hauk, O., & Pulvermuller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 115, 10901103.Google Scholar
Helenius, P., Salmelin, R., Service, E., & Connolly, J. F. (1998). Distinct time courses of word and context comprehension in the left temporal cortex. Brain, 121, 11331142.Google Scholar
Helenius, P., Tarkiainen, A., Cornelissen, P., Hansen, P. C., & Salmelin, R. (1999). Dissociation of normal feature analysis and deficient processing of letter-strings in dyslexic adults. Cerebral Cortex, 476483.Google Scholar
Hull, R., & Vaid, J. (2007). Bilingual language lateralization: a meta-analytic tale of two hemispheres. Neuropsychologia, 45, 19872008.Google Scholar
Illes, J., Francis, W. S., Desmond, J. E., Gabrieli, J. D., Glover, G. H., Poldrack, R., Lee, C.J., & Wagner, A.D. (1999). Convergent cortical representation of semantic processing in bilinguals. Brain and Language, 70, 347363.Google Scholar
Jakobsen, A. L. L. S. (1999). Translog documentation. In Hansen, G. (Ed.), Probing the process in translation: methods and results. Copenhagen Studies in Language (Vol. 24). Copenhagen: Samfundslitteratur.Google Scholar
Jiang, N. (1999). Testing explanations for asymmetry in cross-language priming. Bilingualism: Language and Cognition, 2, 5975.Google Scholar
Jin, Y. S. (1990). Effects of concreteness on cross-language priming in lexical decisions. Perceptual and Motor Skills, 70, 11391154.Google Scholar
Keatley, C., & de Gelder, B. (1992). The bilingual primed lexical decision task: cross-language priming disappears with speeded responses. European Journal of Cognitive Psychology, 4, 273292.Google Scholar
Keatley, C. W., Spinks, J. A., & de Gelder, B. (1994). Asymmetrical cross-language priming effects. Memory and Cognition, 22, 7084.CrossRefGoogle ScholarPubMed
Kerkhofs, R., Dijkstra, T., Chwilla, D. J., & de Bruijn, E. R. (2006). Testing a model for bilingual semantic priming with interlingual homographs: RT and N400 effects. Brain Research, 1068, 170183.CrossRefGoogle Scholar
Khateb, A., Abutalebi, J., Michel, C. M., Pegna, A. J., Lee-Jahnke, H., & Annoni, J. M. (2007a). Language selection in bilinguals: A spatio-temporal analysis of electric brain activity. International Journal of Psychophysiology, 65, 201213.Google Scholar
Khateb, A., Annoni, J. M., Landis, T., Pegna, A. J., Custodi, M. C., Fonteneau, E., Morand, S., & Michel, C.M. (1999). Spatio-temporal analysis of electric brain activity during semantic and phonological word porcessing. International Journal of Psychophysiology, 32, 215231.Google Scholar
Khateb, A., Michel, C., Pegna, A., Thut, G., Landis, T., & Annoni, J. (2001). The time course of semantic category processing in the cerebral hemispheres: an electrophysiological study. Brain Research, Cognitive Brain Research, 10, 251264.Google Scholar
Khateb, A., Michel, C. M., Pegna, A. J., Landis, T., & Annoni, J. M. (2000a). New insights into the Stroop effect: a spatio-temporal analysis of electric brain activity. Neuroreport, 11, 18491855.Google Scholar
Khateb, A., Michel, C. M., Pegna, A. J., O’Dochartaigh, S. D., Landis, T., & Annoni, J. M. (2003). Processing of semantic categorical and associative relations: an ERP mapping study. International Journal of Psychophysiology, 49 (1), 4155.Google Scholar
Khateb, A., Pegna, A. J., Landis, T., Michel, C. M., Brunet, D., Seghier, M. L., et al. (2007b). Rhyme processing in the brain: An ERP mapping study. International Journal of Psychophysiology, 63, 240250.Google Scholar
Khateb, A., Pegna, A. J., Landis, T., Mouthon, M. S., & Annoni, J. M. (2010). On the origin of the N400 effects: an ERP waveform and source localization analysis in three matching tasks. Brain Topography, 23, 311320.CrossRefGoogle ScholarPubMed
Khateb, A., Pegna, A. J., Michel, C. M., Custodi, M. C., Landis, T., & Annoni, J. M. (2000b). Semantic category and rhyming processing in the left and right cerebral hemisphere. Laterality, 5 (1), 3553.CrossRefGoogle ScholarPubMed
Khateb, A., Pegna, A. J., Michel, C. M., Landis, T., & Annoni, J. M. (2002). Dynamics of brain activation during an explicit word and image recognition task: an electrophysiological study. Brain Topography, 14, 197213.Google Scholar
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171174.Google Scholar
Klein, D., Milner, B., Zatorre, R. J., Zhao, V., & Nikelski, J. (1999). Cerebral organization in bilinguals: a PET study of Chinese–English verb generation. Neuroreport, 10, 28412846.Google Scholar
Korinth, S.P. & Breznitz, Z. (2014). Fast and slow readers of the Hebrew language show divergence in brain response approximately 200 ms post stimulus: an ERP study. PLoS One 9, doi:10.1371/journal.pone.0103139.CrossRefGoogle Scholar
Kotz, S. A., & Elston-Güttler, K. (2004). The role of proficiency on processing categorical and associative information in the L2 as revealed by reaction times and event-related brain potentials. Journal of Neurolinguistics, 17, 215235.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category Interference in Translation and Picture Naming: Evidence for Asymmetric Connections Between Bilingual Memory Representations. Journal of Language and Memory, 33, 149174.Google Scholar
Kroll, J. F., van Hell, J.G., Tokowicz, N., & Green, D. W. (2010) The Revised Hierarchical Model: A critical review and assessment. Bilingualism: Language and Cognition, 13: 373381.Google Scholar
Kronbichler, M., Wimmer, H., Staffen, W., Hutzler, F., Mair, A., & Ladurner, G. (2008). Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Human Brain Mapping, 29, 613625.Google Scholar
Kuperberg, G. R., McGuire, P. K., Bullmore, E. T., Brammer, M. J., Rabe-Hesketh, S., Wright, I.C., Lythgoe, D.J., Williams, S.C., & David, A.S. (2000). Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study. Journal of Cognitive Neuroscience, 12, 321341.Google Scholar
Kutas, M., & Federmeier, K. D. (2009). Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). Annual Review of Psychology, 62, 621647.Google Scholar
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9, 920933.Google Scholar
Lehmann, D. (1987). Principles of spatial analysis. In Gevins, A. S. & Remond, A. (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology. Vol 1: Methodes of analysis of brain electrical and magnetic signals (pp. 309354). Amsterdam: Elsevier.Google Scholar
Lehmann, D., & Skrandies, W. (1980). Reference-free identification of components of chekerboard-evoked multichannels potential fields. Electroencephalography and Clinical Neurophysiology, 48, 609621.Google Scholar
Lehtonen, M., Hultén, A., Rodríguez-Fornells, A., Cunillera, T., Tuomainen, J., & Laine, M. (2012). Differences in word recognition between early bilinguals and monolinguals: Behavioral and ERP evidence. Neuropsychologia, 50, 13621371 CrossRefGoogle ScholarPubMed
Lucas, T. H., McKhann, G. M., & Ojemann, G. A. (2004). Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. Journal of Neurosurgery, 101, 449457.Google Scholar
Matsumoto, A., Iidaka, T., Haneda, K., Okada, T., & Sadato, N. (2005). Linking semantic priming effect in functional MRI and event-related potentials. Neuroimage, 2, 624634.Google Scholar
Maurer, U., Brem, S., Bucher, K., Kranz, F., Benz, R., Steinhausen, H. C., & Brandeis, D. (2007). Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain, 130, 32003210.Google Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Science, 7, 293299.Google Scholar
McCarthy, G., Nobre, A. C., Bentin, S., & Spencer, D. D. (1995). Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. Journal of Neuroscience, 15, 10801089.Google Scholar
Menenti, L. (2006). L2-L1 Word Association in bilinguals: Direct Evidence. Nijmegen CNS, 1, 1724.Google Scholar
Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227234.CrossRefGoogle ScholarPubMed
Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. Neuroimage, 2011, 28, 371385.Google Scholar
Michel, C. M., Thut, G., Morand, S., Khateb, A., Pegna, A. J., Grave de Peralta, R., Gonzalez, S., Seeck, M., & Landis, T. (2001). Electric source imaging of human brain functions. Brain Research Brain Research Reviews, 36, 108118.Google Scholar
Midgley, K. J., Holcomb, P. J., & Grainger, J. (2009). Language effects in second language learners and proficient bilinguals investigated with event-related potentials. Journal of Neurolinguistics, 22, 281300.Google Scholar
Moreno, E. M., & Kutas, M. (2005). Processing semantic anomalies in two languages: an electrophysiological exploration in both languages of Spanish-English bilinguals. Brain Research Cognitive Brain Research, 22, 205220.Google Scholar
Mousty, P., & Radeau, M. (1990). Brulex. Une base de données lexicales informatisée pour le français écrit et parlé. L’année Psychologique, 551566.Google Scholar
Murray, M. M., Brunet, D., & Michel, C. M. (2008). Topographic ERP analyses: a step-by-step tutorial review. Brain Topography, 20, 249264.Google Scholar
Nakamura, K., Kouider, S., Makuuchi, M., Kuroki, C., Hanajima, R., Ugawa, Y., & Ogawa, S. (2010). Neural control of cross-language asymmetry in the bilingual brain. Cerebral Cortex, 20, 22442251.CrossRefGoogle ScholarPubMed
Neely, J. H. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In Besner, D. & Humphreys, G. W. (Eds.), Basic processes in reading: Visual word recognition (pp. 264336). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Newman, A. J., Pancheva, R., Ozawa, K., Neville, H. J., & Ullman, M. T. (2001). An event-related fMRI study of syntactic and semantic violations. Journal of Psycholinguistic Research, 30, 339364.Google Scholar
Nieto, A., Hernandez, S., Gonzalez-Feria, L., & Barroso, J. (1990). Semantic capabilities of the left and right cerebral hemispheres in categorization tasks: effects of verbal-pictorial presentation. Neuropsychologia, 28, 11751186.CrossRefGoogle ScholarPubMed
Nobre, A. C., Allison, T., & McCarthy, G. (1994). Word recognition in the human inferior temporal lobe. Nature, 372, 260263.Google Scholar
Nobre, A. C., & McCarthy, G. (1995). Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. Journal of Neuroscience, 15, 10901098.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburg Inventory. Neuropsychologia, 9, 97113.Google Scholar
Palmer, S. D., van Hooff, J. C., & Havelka, J. (2010). Language representation and processing in fluent bilinguals: electrophysiological evidence for asymmetric mapping in bilingual memory. Neuropsychologia, 48, 14261437.Google Scholar
Paradis, M. (1995). Aspects of Bilingual Aphasia. Oxford: Pergamon Press.Google Scholar
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Transactions on Biomedical Engineering, 7, 658665.Google Scholar
Paulmann, S., Elston-Güttler, K. E., Gunter, T. C., & Kotz, S. A. (2006). Is bilingual lexical access influenced by language context? Neuroreport, 17, 727731.Google Scholar
Pegna, A. J., Khateb, A., Spinelli, L., Seeck, M., Landis, T., & Michel, C. M. (1997). Unraveling the cerebral dynamics of mental imagery. Human Brain Mapping, 5, 410421.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinions in Neurobiology, 15, 202206.Google Scholar
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S.F., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Perez-Abalo, M. C., Rodriguez, R., Bobes, M. A., Guttierrez, J., & Valdes-Sosa, M. (1994). Brain potentials and the availability of semantic and phonological codes over time. Neuroreport, 5, 21732177.Google Scholar
Polich, J. (1985). Semantic categorization and event-related potentials. Brain and Language, 26, 304321.Google Scholar
Pollen, D. A. (1999). On the neural correlates of visual perception. Cerebral Cortex, 9, 419.Google Scholar
Potter, M. C., So, K. F., Von Eckardt, B., & Feldman, L. (1984). Lexical and conceptual representation in beginning and proficient bilinguals. Journal of Verbal Learning and Verbal Behavior, 23, 2338.Google Scholar
Proverbio, A. M., Cok, B., & Zani, A. (2002). Electrophysiological measures of language processing in bilinguals. Journal of Cognitive Neuroscience, 14, 9941017.Google Scholar
Proverbio, A. M., Leoni, G., & Zani, A. (2004). Language switching mechanisms in simultaneous interpreters: an ERP study. Neuropsychologia, 42, 16361656.Google Scholar
Proverbio, A. M., Zani, A., & Adorni, R. (2008). The left fusiform area is affected by written frequency of words. Neuropsychologia., 46, 22922299.Google Scholar
Rossell, S. L., Price, C. J., & Nobre, A. C. (2003). The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia, 4, 550564.Google Scholar
Rugg, M. D. (1985). The effects of semantic priming and word repetition on event-related potentials. Psychophysiology, 22, 642647.Google Scholar
Taha, H., Ibrahim, R., & Khateb, A. (2013). How does Arabic orthographic connectivity modulate brain activity during visual word recognition: an ERP study. Brain Topography, 26, 292302.Google Scholar
Taha, H., & Khateb, A. (2013). Resolving the orthographic ambiguity during visual word recognition in Arabic: an event-related potential investigation. Frontiers in Human Neuroscience, 7:821. doi:10.3389/fnhum.2013.00821.Google Scholar
Thierry, G., & Wu, Y. J. (2007). Brain potentials reveal unconscious translation during foreign-language comprehension. Proceedings of the National Academy of Science USA, 104, 1253012535.Google Scholar
Tzelgov, J., & Eben-Ezra, S. (1992). Components of the between-language semantic priming effect. European Journal of Cognitive Psychology, 4, 253272.Google Scholar
van den Brink, D., Brown, C. M., & Hagoort, P. (2001). Electrophysiological evidence for early contextual influences during spoken-word recognition: N200 versus N400 effects. Journal of Cognitive Neuroscience, 13, 967985.Google Scholar
van der Mark, S., Bucher, K., Maurer, U., Schulz, E., Brem, S., Buckelmuller, J., Kronbichler, M., Loenneker, T., Klaver, P., Martin, E., & Brandeis, D. (2009). Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. Neuroimage., 47, 19401949.CrossRefGoogle ScholarPubMed
van Heuven, W. J., & Dijkstra, T. (2010). Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models. Brain, 64, 104122.Google Scholar
von Studnitz, R., & Green, D. (1997). Lexical decision and language switching. The International Journal of Bilingualism, 1, 324.Google Scholar
von Studnitz, R., & Green, D. (2002). The cost of switching language in a semantic categorization task. Bilingualism: Language and Cognition, 5, 241251.Google Scholar
Walker, E., & Ceci, S. J. (1985). Semantic priming effects of stimuli presented to the right and left visual fields. Brain and Language, 25, 144159.Google Scholar
Warrington, E. K., & Shallice, T. (1980). Word-form dyslexia. Brain., 103, 99112.CrossRefGoogle ScholarPubMed
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S., Villringer, A., & Perani, D. (2003). Early Setting of Grammatical Processing in the Bilingual Brain. Neuron, 37, 159170.Google Scholar
Weber-Fox, C. M., & Neville, H. J. (1996). Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive Neuroscience, 8, 231256.CrossRefGoogle ScholarPubMed
Zatorre, R. (1989). On the representation of multiple languages in the brain: old problems and new directions. Brain and Language, 36, 127147.Google Scholar
Supplementary material: PDF

Khateb supplementary material

Khateb supplementary material 1

Download Khateb supplementary material(PDF)
PDF 141.8 KB