Skip to main content Accessibility help

Item-based selection is in good shape in visual compound search: A view from electrophysiology

  • Thomas Töllner (a1) (a2) and Dragan Rangelov (a1)


We argue that although the framework put forward by Hulleman & Olivers (H&O) can successfully explain much of visual search behaviour, it appears limited to tasks without precise target identification demands. In particular, we contend that the unit of selection may be larger than a single item in standard detection tasks, whereas the unit may mandatorily be item-based in compound tasks.



Hide All
Bravo, M. J. & Nakayama, K. (1992) The role of attention in different visual-search tasks. Perception and Psychophysics 51:465–72. doi: 10.3758/BF03211642.
Cowan, N. (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24:87114. doi: 10.1017/S0140525X01003922.
Egner, T. & Hirsch, J. (2005) Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience 8:1784–90. doi: 10.1038/nn1594.
Eimer, M. (1996) The N2pc as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology 99:225–34. doi: 10.1016/0013-4694(96)95711-9.
Luck, S. J. & Hillyard, S. A. (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31:291308. doi: 10.1111/j.1469-8986.1994.tb02218.x.
Mazza, V. & Caramazza, A. (2011) Temporal brain dynamics of multiple object processing: The flexibility of individuation. PLoS ONE 6(2):e17453. doi: 10.1371/journal.pone.0017453.
Mazza, V., Pagano, S. & Caramazza, A. (2013) Multiple object individuation and exact numeration. Journal of Cognitive Neuroscience 25:697705. doi: 10.1162/jocn_a_00349.
Mazza, V., Turatto, M., Umilta, C. & Eimer, M. (2007) Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research 181:531–36. doi: 10.1007/s00221-007-1002-4.
Rangelov, D., Müller, H. J. & Zehetleitner, M. (2013a) Visual search for feature singletons: Multiple mechanisms produce sequence effects in visual search. Journal of Vision 13:22. doi: 10.1167/13.3.22.
Rangelov, D., Töllner, T., Müller, H. J. & Zehetleitner, M. (2013b) What are task-sets: A single, integrated representation or a collection of multiple control representations? Frontiers in Human Neuroscience 7:524. doi: 10.3389/fnhum.2013.00524.
Töllner, T., Conci, M. & Müller, H. J. (2015a) Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping 36(3):935–44. doi: 10.1002/hbm.22677.
Töllner, T., Conci, M., Rusch, T. & Müller, H. J. (2013) Selective manipulation of target identification demands in visual search: The role of stimulus contrast in CDA activations. Journal of Vision 13(3):23, 113. doi: 10.1167/13.3.23.
Töllner, T., Eschmann, K., Rusch, T. & Müller, H. J. (2014) Contralateral delay activity reveals dimension-based attentional orienting to locations in visual working memory. Attention Perception, and Psychophysics 76(3):655–62. doi: 10.3758/s13414-014-0636-0.
Töllner, T., Mink, M. & Müller, H. J. (2015b) Searching for targets in visual working memory: Investigating a “dimensional feature bundle” (DFB) model. Annals of the New York Academy of Sciences 1339(1):3244. doi: 10.1111/nyas.12703.
Töllner, T., Müller, H. J. & Zehetleitner, M. (2012a) Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex 22(7):1554–63. doi: 10.1093/cercor/bhr231.
Töllner, T., Rangelov, D. & Müller, H. J. (2012b) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990–99. doi: 10.1073/pnas.1206382109.
Töllner, T., Zehetleitner, M., Gramann, K. & Müller, H. J. (2011) Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PLoS ONE 6(1):e16276. doi: 10.1371/journal.pone.0016276.
Vogel, E. K. & Machizawa, M. G. (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–51. doi: 10.1038/nature02447.
Wiegand, I., Töllner, T., Habekost, T., Dyrholm, M., Müller, H. J. & Finke, K. (2014) Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters. Cerebral Cortex 24(8):1967–78. doi: 10.1093/cercor/bht071.
Woods, D. L., Courchesne, E., Hillyard, S. A. & Galambos, R. (1980) Recovery cycles of event-related potentials in multiple detection tasks. Electroencephalography and Clinical Neurophysiology 50:335–47. doi: 10.1016/0013-4694(80)90001-2.
Young, A. H. & Hulleman, J. (2013) Eye movements reveal how task difficulty moulds visual search. Journal of Experimental Psychology: Human Perception and Performance 39:168–90.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed