Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:08:42.073Z Has data issue: false hasContentIssue false

Further explorations of the empirical and theoretical aspects of the emulation theory

Published online by Cambridge University Press:  01 June 2004

Rick Grush*
Affiliation:
Department of Philosophy, University of California, San Diego, La Jolla, CA92093-0119http://mind.ucsd.edu

Abstract:

The emulation theory of representation articulated in the target article is further explained and explored in this response to commentaries. Major topics include: the irrelevance of equilibrium-point and related models of motor control to the theory; clarification of the particular sense of “representation” which the emulation theory of representation is an account of; the relation between the emulation framework and Kalman filtering; and addressing the empirical data considered to be in conflict with the emulation theory. In addition, I discuss the further empirical support for the emulation theory provided by some commentators, as well as a number of suggested theoretical applications.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamovich, S. V., Archambault, P. S., Ghafouri, M., Levin, M. F., Poizner, H. & Feldman, A. G. (2001) Hand trajectory invariance in reaching movements involving the trunk. Experimental Brain Research 138:288303. [RB]Google Scholar
Adler, B., Collewijn, H., Curio, G., Grusser, O. J., Pause, M., Schreiter, U. & Weiss, L. (1981) Sigma-movement and sigma-nystagmus: A new tool to investigate the gaze-pursuit system and visual-movement perception in man and monkey. Annals of the New York Academy of Sciences 374:284302. [TGC]Google Scholar
Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. (2000) A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience 20:2683–90. [CLR]Google Scholar
Alain, C., Arnott, S. R., Hevenor, S., Graham, S. & Grady, C. L. (2001) “What” and “where” in the human auditory system. Proceedings of the National Academy of Science USA 98(21):12301–306. [aRG]Google Scholar
Alexander, G. E. & Crutcher, M. D. (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology 64:164–78. [BT]Google Scholar
Ariff, G., Donchin, O., Nanayakkara, T. & Shadmehr, R. (2002) A real-time state predictor in motor control: Study of saccadic eye movements during unseen reaching movements. Journal of Neuroscience 22:7721–29. [OD]Google Scholar
Ashe, J., Taira, M., Smyrnis, N., Pellizzer, G., Georgakopoulos, T., Lurito, J. T. & Georgopoulos, A. P. (1993) Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Experimental Brain Research 95:118–30. [BT]Google Scholar
Balasubramaniam, R. & Feldman, A. G. (2004) Guiding movements without redundancy problems. In: Coordination dynamics: Issues and trends, ed. Jirsa, V. K. & Kelso, J. A. S.. Springer. [RB]Google Scholar
Barsalou, L. W. (1999) Perceptual symbol systems. Behavioral and Brain Sciences 22(4):577609. [aRG, CLR]Google Scholar
Barsalou, L. W., Simmons, W. K., Barbey, A. K. & Wilson, C. D. (2003) Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Science 7(2):8491. [VG]Google Scholar
Barsalou, L., Solomon, K. O. & Wu, L. (1999) Perceptual simulation in conceptual tasks. In: Cultural, typological, and psychological perspectives in cognitive linguistics, ed. Hiraga, M. K., Sinha, C. & Wilcox, S.. John Benjamins. [aRG]Google Scholar
Bartolomeo, P., Bachoud-Levi, A. C. & Denes, G. (1997) Preserved imagery for colours in a patient with cerebral achromatopsia. Cortex 33:369–78. [VG, rRG]Google Scholar
Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. (1999) Reach plans in eye-centered coordinates. Science 285:257–60. [OD]Google Scholar
Behrmann, M. (2000) The mind's eye mapped onto the brain's matter. Trends in Psychological Science 9(2):5054. [aRG]Google Scholar
Bell, C., Bodznick, D., Montgomery, J. & Bastian, J. (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain, Behavior and Evolution 50 (Suppl. 1):1731. [TGC]Google Scholar
Bell, C. C., Libouban, S. & Szabo, T. (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. Journal of Comparative Neurology 216(3): 327–38. [TGC]Google Scholar
Bellman, R. (1964) Perturbation techniques in mathematics, physics, and engineering. Holt, Rinehart and Winston. [VGo]Google Scholar
Benson, D. F. (1994) The neurology of thinking. Oxford Press. [RIS]Google Scholar
Bernstein, N. A. (1947) On the construction of movements. Medgiz. [MLL]Google Scholar
Bernstein, N. A. (1967) The coordination and regulation of movements. Pergamon. [MLL, RB]Google Scholar
Berthoz, A. (1996) The role of inhibition in the hierarchical gating of executed and imagined movements. Brain Research. Cognitive Brain Research 3:101–13. [OD]Google Scholar
Beschin, N., Basso, A. & Della Sala, S. (2000) Perceiving left and imagining right: Dissociation in neglect. Cortex 36:401–14. [VG, rRG]Google Scholar
Bickhard, M. H. (1980) Cognition, convention, and communication. Praeger. [GS]Google Scholar
Bickhard, M. H. (1993) Representational content in humans and machines. Journal of Experimental and Theoretical Artificial Intelligence 5:285333. [GS]Google Scholar
Bickhard, M. H. (2000) Motivation and emotion: An interactive process model. In: The caldron of consciousness, ed. Ellis, R. D. & Newton, N., pp. 161–78. John Benjamins. [GS]Google Scholar
Bickhard, M. H. (2004) Process and emergence: Normative function and representation. Axiomathes 14:135–69. [GS]Google Scholar
Bickhard, M. H. & Campbell, R. L. (1996) Topologies of learning and development. New Ideas in Psychology 14(2):111–56. [GS]Google Scholar
Bickhard, M. H. & Terveen, L. (1995) Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Elsevier. [GS]Google Scholar
Bisiach, E. & Luzzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. [rRG, BT]Google Scholar
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12(9):1879–84. [TGC]Google Scholar
Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. (1998) Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience 18(18):7511–18. [aRG]Google Scholar
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (1998) Central cancellation of selfproduced tickle sensation. Nature Neuroscience 1(7):635–40. [TGC]Google Scholar
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (2002) Abnormalities in the awareness of action. Trends in Cognitive Sciences 6(6):237–42. [TGC]Google Scholar
Bodznick, D., Montgomery, J. C. & Carey, M. (1999) Adaptive mechanisms in the elasmobranch hindbrain. Journal of Experimental Biology 202:1357–64. [TGC]Google Scholar
Borah, J., Young, L. R. & Curry, R. E. (1988) Optimal estimator model for human spatial orientation. Annals of the New York Academy of Sciences 545:5173. [DMM]Google Scholar
Boring, E. G. (1950) History of experimental psychology. Appleton-Century- Crofts. [JSJ]Google Scholar
Botwinick, M. & Cohen, J. (1998) Rubber hands “feel” touch that eyes see. Nature 391:756. [BT]Google Scholar
Brooks, R. A. (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2:1423. [aRG]Google Scholar
Brooks, R. A. (1991) Intelligence without representation. Artificial Intelligence 47:139–60. [aRG]Google Scholar
Brugger, P., Kollias, S. S., Muri, R. M., Crelier, G., Hepp-Reymond, M. C. & Regard, M. (2000) Beyond re-membering: Phantom sensations of congenitally absent limbs. Proceedings of the National Academy of Sciences USA 97:6167–72. [BT]Google Scholar
Brunet, E., Sarfati, Y., Hardy-Bayle, M. C. & Decety, J. (2000) A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157–66. [OD]Google Scholar
Bryson, A. & Ho, Y-C. (1969) Applied optimal control; Optimization, estimation, and control. Blaisdell. [aRG]Google Scholar
Buneo, C. A., Jarvis, M. R., Batista, A. P. & Andersen, R. A. (2002) Direct visuomotor transformations for reaching. Nature 416:632–36. [KS]Google Scholar
Calvert, G. A. (2001) Cross-modal processing in the human brain: Insights from functional neuroimaging studies. Cerebral Cortex 11:1111–23. [KS]Google Scholar
Calvo Garzón, F. (Submitted) Towards a general theory of antirepresentationalism. [FCG]Google Scholar
Campbell, T. G., Ericksson, G., Wallis, G., Liu, G. B. & Pettigrew, J. D. (2003) Correlated individual variation of efference copy and perceptual rivalry timing. Program No. 550.1. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience. Online Publication. [TGC]Google Scholar
Carpenter, A. F., Georgopoulos, A. P. & Pellizzer, G. (1999) Motor cortical encoding of serial order in a context-recall task. Science 283:1752–57. [BT]Google Scholar
Castelli, F., Frith, C., Happe, F. & Frith, U. (2002) Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125:1839–49. [OD]Google Scholar
Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G. & Hallett, M. (1998) The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(2):253–64. [BT]Google Scholar
Charpentier, A. (1891) Analyse experimentale de quelques elements de la sensation de poids. Archives de Physiologie Normales et Pathologiques 3:122– 35. [EMH]Google Scholar
Chen, R., Cohen, L. G. & Hallett, M. (1997) Role of the ipsilateral motor cortex in voluntary movement. Canadian Journal of Neurological Science 24:284–91. [BT]Google Scholar
Chen, W., Kato, T., Zhu, X. H., Ogawa, S., Tank, D. W. & Ugurbil, K. (1998) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. NeuroReport 9(16):3669–74.Google Scholar
Christensen, W. D. & Bickhard, M. H. (2002) The process dynamics of normative function. Monist 85(1):328. [GS]Google Scholar
Clark, A. (1997) Being there: Putting brain, body and world together again. MIT Press. [JSJ, GS]Google Scholar
Clark, A. (2003) Natural-born cyborgs. Oxford University Press. [TD]Google Scholar
Clark, A. & Chalmers, D. (1998) The extended mind. Analysis 58(1):719. [TD, rRG]Google Scholar
Cohen, M. S., Kosslyn, S. M., Breiter, H. C., Digirolamo, G. J., Thompson, W. L., Anderson, A. K., Bookheimer, S. Y., Rosen, B. R. & Belliveau, J. W. (1996) Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain 119:89100. [BT]Google Scholar
Cohen, Y. E. & Andersen, R. A. (2002) A common reference frame for movement plans in the posterior parietal cortex. Nature Review Neuroscience 3:553–62. [rRG, KS]Google Scholar
Cooper, L. A. & Shepard, R. N. (1973) Chronometric studies of the rotation of mental images. In: Visual information processing, ed. Chase, W. G., pp. 2458. Academic Press. [TD]Google Scholar
Courchesne, E. (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology 7:269–78. [OD]Google Scholar
Craik, K. (1943) The nature of explanation. Cambridge University Press. [aRG]Google Scholar
Craske, B. (1977) Perception of impossible limb positions induced by tendon vibration. Science 196:7173. [MLL, NS]Google Scholar
Damasio, A. R. (1989) Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition 33:2562. [CLR]Google Scholar
Damasio, A. R. (1994) Descartes’ error: Emotion, reason, and the human brain. Putnam. [FCG, aRG]Google Scholar
Danckert, J., Ferber, S., Doherty, T., Steinmetz, H., Nicolle, D. & Goodale, M. A. (2002) Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase 8:194204. [VG]Google Scholar
Dartnall, T. H. (2003) Externalism extended. In: Proceedings of the Joint Fourth International Conference on Cognitive Science and the Seventh Australasian Society for Cognitive Science Conference, University of New South Wales, Sydney, Australia. July 2003, ed. Slezak, P., pp. 9499. The University of New South Wales Press. [TD]Google Scholar
Decety, J. & Jeannerod, M. (1995) Mentally simulated movements in virtual reality. Does Fitts’ law hold in motor imagery? Behavioral Brain Research 72:127–34. [OD, aRG]Google Scholar
Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J. C. & Fazio, F. (1994) Mapping motor representations with positron emission tomography. Nature 371:600602. [BT]Google Scholar
Deiber, M.-P., Ibanez, V., Honda, M., Sadato, N., Raman, R. & Hallett, M. (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7(2):7385. [aRG, TH]Google Scholar
de Renzi, E., Motti, F. & Nichelli, P. (1980) Imitating gestures – A quantitative approach to the ideomotor apraxia. Archives of Neurology 37:610. [BT]Google Scholar
Desmurget, M. & Grafton, S. (2000) Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences 4(11):423–31. [aRG]Google Scholar
Dijkstra, T. M., Schoner, G. & Gielen, C. C. (1994) Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research 97:477–86. [MLL]Google Scholar
di Pellegrino, G., Ladavas, E. & Farnè, A. (1997) Seeing where your hands are. Nature 21(388): 730. [BT]Google Scholar
Donald, M. (1994) Precis of the origins of modern mind: Three stages in the evolution of culture and cognition. Behavioral and Brain Sciences 16:737–91. [HW]Google Scholar
Donchin, O., Francis, J. T. & Shadmehr, R. (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: Theory and experiments in human motor control. Journal of Neuroscience 23:9032–45. [OD]Google Scholar
Dretske, F. I. (1988) Explaining behavior. MIT Press. [GS]Google Scholar
Droulez, J. & Cornilleau-Peres, V. (1993) Application of the coherence scheme to the multisensory fusion problem. In: Multisensory control of movement, ed. Berthoz, A., pp. 485501. Oxford University Press. [DMM]Google Scholar
Droulez, J. & Darlot, C. (1989) The geometric and dynamic implications of the coherence constraints in three-dimensional sensorimotor interactions. In: Attention and performance, vol. XIII, ed. Jeannerod, M., pp. 495526. Erlbaum. [DMM]Google Scholar
Duhamel, J.-R., Colby, C. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040):9092. [PG, arRG, MW]Google Scholar
Eccles, J. C. (1979) Introductory remarks. In: Cerebro-cerebellar interactions, ed. Massion, J. & Sasaki, K., pp. 1018. Elsevier. [JSJ]Google Scholar
Eliasmith, C. & Anderson, C. (2003) Neural engineering: Computational, representation, and dynamics in neurobiological systems. MIT Press. [aRG]Google Scholar
Ellis, R. D. (1995) Questioning consciousness. Benjamins. [NN]Google Scholar
Enoka, R. M. (1994) Neuromechanical basis of kinesiology. Human Kinetics. [MLL]Google Scholar
Erlhagen, W. & Schöner, G. (2002) Dynamic field theory of movement preparation. Psychological Review 109:545–72. [FCG]Google Scholar
Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (2000) Visuomotor neurons: Ambiguity of the discharge or “motor” perception? International Journal of Psychophysiology 35:165–77. [RIS]Google Scholar
Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. (2002) Anatomical evidence of multimodal integration in primate striate cortex. Journal of Neuroscience 22:5749–59. [KS]Google Scholar
Farah, M. J., Hammond, K. M., Levine, D. N. & Calvanio, R. (1988) Visual and spatial mental imagery: Dissociable systems of representation. Cognitive Psychology 20(4):439–62. [aRG]Google Scholar
Farah, M. J., Soso, M. J., Dasheiff, R. M. (1992) Visual angle of the mind's eye before and after unilateral occipital lobectomy. Journal of Experimental Psychology: Human Perception and Performance 18(1):241–46. [aRG]Google Scholar
Fauconnier, G. (1985) Mental spaces: Aspects of meaning construction in natural language. MIT Press. [aRG]Google Scholar
Feinberg, I. (1978) Efference copy and corollary discharge: Implications for thinking and its disorders. Schizophrenia Bulletin 4(4):636–40. [TGC]Google Scholar
Feldman, A. G. (1986) Once more on the equilibrium-point hypothesis (l model) for motor control. Journal of Motor Behavior 18:1754. [MLL]Google Scholar
Feldman, A. G. & Latash, M. L. (1982) Afferent and efferent components of joint position sense: Interpretation of kinaesthetic illusions. Biological Cybernetics 42:205–14. [MLL]Google Scholar
Feldman, A. G. & Levin, M. F. (1993) Control variables and related concepts in motor control. Concepts in Neuroscience 4:2551. [rRG]Google Scholar
Feldman, A. G. & Levin, M. F. (1995) The origin and use of positional frames of reference in motor control. Behavioral and Brain Sciences 18(4):723806. [RB, rRG, MLL]Google Scholar
Feltz, D. L. & Landers, D. M. (1983) The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology 5:2557. [NS]Google Scholar
Feynman, R. P. (2001) The pleasure of finding things out, 1st edition. Penguin Books. [TGC]Google Scholar
Flanagan, J. R. & Beltzner, M. A. (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nature Neuroscience 3:737–41. [EMH]Google Scholar
Flavell, J. H. (1999) Cognitive development: Children's knowledge about the mind. Annual Review of Psychology 50:2145. [aRG]Google Scholar
Freides, D. (1974) Human information processing and sensory modality: Crossmodal functions, information complexity and deficit. Psychological Bulletin 81:284310. [KS]Google Scholar
Freyd, J. J. & Finke, R. A. (1984) Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition 10:126–32. [MWi]Google Scholar
Freyd, J. J. & Jones, K. T. (1994) Representational momentum for a spiral path. Journal of Experimental Psychology: Learning, Memory, and Cognition 20:968–76. [MWi]Google Scholar
Frith, C. D., Blakemore, S. & Wolpert, D. M. (2000) Explaining the symptoms of schizophrenia: Abnormalities in the awareness of action. Brain Research. Brain Research Reviews 31:357–63. [OD]Google Scholar
Frith, C. D. & Gallagher, S. (2002) Models of the pathological mind. Journal of Consciousness Studies 9:5780. [OD]Google Scholar
Frith, U. (2001) Mind blindness and the brain in autism. Neuron 32:969–79. [OD]Google Scholar
Gallagher, S. & Meltzoff, A. (1996) The earliest sense of self and others: Merleau- Ponty and recent developmental studies. Philosophical Psychology 9:213–36. [VS]Google Scholar
Ganis, G., Keenan, J. P., Kosslyn, S. M. & Pascual-Leone, A. (2000) Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cerebral Cortex 10:175–80. [BT]Google Scholar
Gärdenfors, P. (2003) How homo became sapiens: On the evolution of thinking. Oxford University Press. [PG]Google Scholar
Gelb, A. (1974) Applied optimal estimation. MIT Press. [aRG]Google Scholar
Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. (1989) Mental rotation of the neuronal population vector. Science 243:234–36. [BT]Google Scholar
Gerardin, E., Sirigu, A., Lehericy, S., Poline, J. B., Gaymard, B., Marsault, C., Agid, Y. & le Bihan, D. (2000) Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10:1093–104. [BT]Google Scholar
Gerloff, C., Corwell, B., Chen, R., Hallett, M. & Cohen, L. G. (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–709. [BT]Google Scholar
Geyer, S., Matelli, M., Luppino, G. & Zilles, K. (2000) Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology 202(6):443– 74. [TH]Google Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin. [EC]Google Scholar
Gibson, J. J. (1979/1986) The ecological approach to visual perception. Houghton Mifflin/ Erlbaum. [JSJ, RIS]Google Scholar
Glasauer, S. (1992) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Annals of the New York Academy of Sciences 656:847–49. [DMM]Google Scholar
Glezer, V. D., Gauzelman, V. E. & Shcherbach, T. A. (1985) Relationship between spatial and spatial-frequency characteristics of receptive fields of cat visual cortex. Neuroscience and Behavioral Physiology 15(6):511–19. [VGo]Google Scholar
Goldenberg, G., Mullbacher, W. & Nowak, A. (1995) Imagery without perception – a case study of anosognosia for cortical blindness. Neuropsychologia 33:1373–82. [VG, rRG]Google Scholar
Goodnow, J. J. & Levine, R. A. (1973) “The grammar of action”: Sequence and syntax in children's copying. Cognitive Psychology 4:8298. [ADS]Google Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972a) Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception? Science 175:1382–84. [NS]Google Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972b) The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–48. [NS]Google Scholar
Gopnik, A. (1998) Explanation as orgasm. Minds and Machines 8:101–18. [PG]Google Scholar
Gordon, R. M. (1986) Folk psychology as simulation. Mind and Language 1:158–71. [aRG]Google Scholar
Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996) Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research 112:103–11. [BT]Google Scholar
Grafton, S. T., Hazeltine, E. & Ivry, R. (1995) Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience 7:497510. [BT]Google Scholar
Grafton, S. T., Hazeltine, E. & Ivry, R. (1998) Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience 18:9420–28. [BT]Google Scholar
Graziano, M. S. A. (1999) Where is my arm? Relative role of vision and proprioception in the neural representation of limb position. Proceedings of the National Academy of Sciences USA 96:10418–21. [BT]Google Scholar
Grea, H., Pisella, L., Rossetti, Y., Desmurget, M., Tilikete, C., Grafton, S., Prablanc, C. & Vighetto, A. (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40(13):2471–80. [VG]Google Scholar
Grossi, D., Angelini, R., Pecchinenda, A. & Pizzamiglio, L. (1993) Left imaginal neglect in heminattention: Experimental study with the o’clock test. Behavioural Neurology 6:155–58. [rRG, BT]Google Scholar
Grush, R. (1995) Emulation and cognition. Doctoral Dissertation, Department of Cognitive Science and Philosophy, University of California, San Diego. UMI. [arRG, EMH]Google Scholar
Grush, R. (1997) The architecture of representation. Philosophical Psychology 10(1):525. [rRG]Google Scholar
Grush, R. (1998) Wahrnehmung, Vorstellung und die sensomotorische Schleife. (English translation: Perception, imagery, and the sensorimotor loop) In: Bewußtsein und Repräsentation, ed. Esken, F. & Heckmann, H.-D.. Verlag Ferdinand Schöningh. [PG]Google Scholar
Grush, R. (2000) Self, world and space: The meaning and mechanisms of ego- and allocentric spatial representation. Brain and Mind 1(1):5992. [rRG]Google Scholar
Grush, R. (2001) The semantic challenge to computational neuroscience. In: Theory and method in the neurosciences, ed. Machamer, P., Grush, R. & McLaughlin, P.. University of Pittsburgh Press. [rRG]Google Scholar
Grush, R. (2003) In defense of some “Cartesian” assumptions concerning the brain and its operation. Biology and Philosophy 18(1):5393. [rRG]Google Scholar
Grusser, O. J. (1995) On the history of the ideas of efference copy and reafference. Clio Medica 33:3555. [TGC]Google Scholar
Guérin, F., Ska, B. & Belleville, S. (1999) Cognitive processing of drawing abilities. Brain and Cognition 40:464–78. [ADS]Google Scholar
Haarmeier, T., Thier, P., Repnow, M. & Petersen, D. (1997) False perception of motion in a patient who cannot compensate for eye movements. Nature 389(6653):849–52. [TGC]Google Scholar
Haken, H., Kelso, J. A. S. & Bunz, H. (1985) A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51:347–56. [CBW]Google Scholar
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. (2003a) Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: A functional magnetic resonance imaging study. Neuroscience Letters 347(3):199201. [TH]Google Scholar
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. (2003b) Neural correlates underlying mental calculation in abacus experts: A functional magnetic resonance imaging study. Neuroimage 19(2, Pt. 1):296307. [TH]Google Scholar
Hanakawa, T., Honda, M., Sawamoto, N., Okada, T., Yonekura, Y., Fukuyama, H. & Shibasaki, H. (2002) The role of rostral Brodmann area 6 in mentaloperation tasks: An integrative neuroimaging approach. Cerebral Cortex 12(11):1157–70. [TH]Google Scholar
Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., van Gelderen, P. & Hallett, M. (2003c) Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology 89(2):9891002. [OD, TH]Google Scholar
Haykin, S. (2001) Kalman filtering and neural networks. Wiley. [PG, aRG]Google Scholar
Hein, A. & Held, R. (1961) A neural model for labile sensorimotor coordinations. Biological Prototypes and Synthetic Systems 1:7174. [DMM]Google Scholar
Heisenberg, M. & Wolf, R. (1988) Reafferent control of optomotor yaw torque in Drosophila melongaster. Journal of Comparative Physiology A163:373–88. [BW]Google Scholar
Held, R. (1961) Exposure history as a factor in maintaining stability of perception and coordination. Journal of Nervous and Mental Disease 132:2632. [DMM]Google Scholar
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience 18:1583–94. [OD]Google Scholar
Hershberger, W. (1976) Afference copy, the closed-loop analogue of von Holst's efference copy Cybernetics Forum 8:97102. [JSJ]Google Scholar
Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461535. [EMH]Google Scholar
Holmes, G. (1922) The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet 2:111–15. [EMH]Google Scholar
Hommel, B., Muesseler, J., Aschersleben, G. & Prinz, W. (2001) The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences 24:849–78. [RIS]Google Scholar
Honda, M., Wise, S. P., Weeks, R. A., Deiber, M. P. & Hallett, M. (1998) Cortical areas with enhanced activation during object centred spatial information processing: A PET study. Brain 121:2145–58. [BT]Google Scholar
Houk, J. C., Singh, S. P., Fischer, C. & Barto, A. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [aRG]Google Scholar
Hubbard, E. M., Altschuler, E. L., Gregory, R. L., Whip, E., Heard, P. & Ramachandran, V. S. (2000) Psychophysics and neuropsychology of the sizeweight illusion. Society for Neuroscience Abstracts 26 (No.167): 4. [EMH]Google Scholar
Hubbard, E. M., Altschuler, E. L. & Ramachandran, V. S. (in preparation) Size matters: Relative contribution of size vs. shape to the size-weight illusion. [EMH]Google Scholar
Hubbard, T. L. (1996) Representational momentum, centripetal force, and curvilinear impetus. Journal of Experimental Psychology: Learning, Memory, and Cognition 22:1049–60. [MWi]Google Scholar
Hubbard, T. L. & Bharucha, J. J. (1988) Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics 44:211–21. [MWi]Google Scholar
Humphrey, N. K. (1993) A history of the mind. Vintage Books. [PG]Google Scholar
Hurley, S. (forthcoming a) Active perception and perceiving action: The shared circuits hypothesis. In: Perceptual experience, ed. Gendler, T. & Hawthorne, J.. Oxford University Press. [rRG]Google Scholar
Hurley, S. (forthcoming b) The shared circuits hypothesis: A unified functional architecture for control, imitation, and simulation. In: Perspectives on Imitation: From mirror neurons to memes, ed. Hurley, S. & Chater, N.. MIT Press. [rRG]Google Scholar
Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., Yoshioke, T. & Kawato, M. (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–95. [aRG]Google Scholar
Ito, M. (1970) Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology 7:162–76. [arRG]Google Scholar
Ito, M. (1984) The cerebellum and neural control. Raven Press. [arRG]Google Scholar
Ito, M. (1993) Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neural Science 16:448–50. [OD]Google Scholar
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17(2):187245. [aRG, NS]Google Scholar
Jeannerod, M. (1995) Mental imagery in the motor context. Neuropsychologia 33:1419–32. [aRG]Google Scholar
Jeannerod, M. (2001) Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage 14:103109. [aRG]Google Scholar
Jeannerod, M. & Frak, V. (1999) Mental imaging of motor activity in humans. Current Opinion in Neurobiology 9:735–39. [aRG]Google Scholar
Johnson, M. (1987) The body in the mind. University of Chicago Press. [aRG]Google Scholar
Johnson, S. H. (2000a) Imagining the impossible: Intact motor representations in hemiplegics. Neuroreport 11:729–32. [aRG]Google Scholar
Johnson, S. H. (2000b) Thinking ahead: The case for motor imagery in prospective judgements of prehension. Cognition 74(2000):3370. [aRG]Google Scholar
Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S. & Heinze, H. J. (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–704. [OD]Google Scholar
Johnson-Laird, P. N. (1983) Mental models. Harvard University Press/Cambridge University Press. [aRG, NN]Google Scholar
Johnson-Laird, P. N. (2001) Mental models and deduction. Trends in Cognitive Sciences 5(10):434– 42. [aRG, HW]Google Scholar
Jordan, J. S. (1998) Recasting Dewey's critique of the reflex-arc concept via a theory of anticipatory consciousness: Implications for theories of perception. New Ideas in Psychology 16(3):165–87. [JSJ]Google Scholar
Jordan, J. S. (2000) The role of “control” in an embodied cognition. Philosophical Psychology 13:233–37. [JSJ]Google Scholar
Jordan, J. S. (2003) The embodiment of intentionality In: Dynamical systems approaches to embodied cognition, ed. Tschacher, W., pp. 201–27. Springer Verlag. [JSJ]Google Scholar
Jordan, M. I., Rumelhart, D. E. (1992) Forward models: Supervised learning with a distal teacher. Cognitive Science 16:307–54. [EMH]Google Scholar
Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(D):3545. [aRG]Google Scholar
Kalman, R. & Bucy, R. S. (1961) New results in linear filtering and prediction theory. Journal of Basic Engineering 83(D):95108. [aRG, VGo]Google Scholar
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 14:155–58. [BT]Google Scholar
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1998) The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences USA 95:861–68. [BT]Google Scholar
Karniel, A. (2002) Three creatures named “forward model.” Neural Networks 15:305307. [BW]Google Scholar
Kawato, M. (1989) Adaptation and learning in control of voluntary movement by the central nervous system. Advanced Robotics 3(3):229–49. [rRG]Google Scholar
Kawato, M. (1990) Computational schemes and neural network models for formation and control of multijoint arm trajectories. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [rRG, EMH]Google Scholar
Kawato, M. (1997) Bidirectional theory approach to consciousness. In: Cognition, computation and consciousness, ed. Ito, M., Miyashita, Y. & Rolls, E. T.. Oxford University Press. [OD]Google Scholar
Kawato, M. (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9:718–27. [aRG]Google Scholar
Kawato, M., Furukawa, K. & Suzuki, R. (1987) A hierarchical neural network model for control and learning of voluntary movement. Biological Cybernetics 57:169–85. [aRG, JSJ]Google Scholar
Kosslyn, S. M. (1994) Image and brain. MIT Press. [aRG]Google Scholar
Kosslyn, S. M., Alpert, N. M., Thompson, W. L., Maljkovic, V., Weise, S. B., Chabris, C. F., Hamilton, S. E., Rauch, S. L. & Buonanno, F. S. (1993) Visualmental imagery activates topographically-organized visual cortex: PET investigations. Journal of Cognitive Neuroscience 5:263–87. [aRG, BT]Google Scholar
Kosslyn, S. M., Ball, T. M. & Reiser, B. J. (1978) Visual imagers preserve metric spatial transformation: Evidence from studies of images scanning. Journal of Experimental Psychology: Human Perception and Performance 4:4760. [rRG, BT]Google Scholar
Kosslyn, S. M. & Sussman, A. L. (1995) Roles of imagery in perception: Or, there is no such thing as immaculate perception. In: The cognitive neurosciences, ed. Gazzaniga, M. S., pp. 1035–42. MIT Press. [arRG, OW]Google Scholar
Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. (1995) Topographical representations of mental images in primary visual cortex. Nature 378:496–98. [aRG]Google Scholar
Kosslyn, S. M., Thompson, W. L., Wraga, M. J. & Alpert, N. M. (2001) Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms. NeuroReport 12:2519–25. [ADS, BT]Google Scholar
Krakauer, J. W., Ghilardi, M.-F. & Ghez, C. (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience 2(11):1026–31. [aRG]Google Scholar
Kuo, A. (1995) An optimal control model for analyzing human postural balance. IEEE Transactions on Biomedical Engineering 42(1):87101. [DMM]Google Scholar
Lakatos, I. (1970) Falsification and the methodology of scientific research programmes. In: Criticism and the growth of knowledge, ed. Lakatos, I. & Musgrave, A., pp. 91195. Cambridge University Press. [EC]Google Scholar
Lakoff, G. (1987) Women, fire and dangerous things: What categories reveal about the mind. The University of Chicago Press. [aRG, NN]Google Scholar
Lakoff, G. & Johnson, M. (1999) Philosophy in the flesh. Basic Books. [aRG]Google Scholar
Lamm, C., Windischberger, C., Leodolter, U., Moser, E. & Bauer, H. (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Neuroimage 14:268–83. [aRG]Google Scholar
Lang, W., Cheyne, D., Hollinger, P., Gerschkager, W. & Lindinger, G. (1996) Electric and magnetic fields of the brain accompanying internal simulation of movement. Brain Research 3:125–29. [BT]Google Scholar
Langacker, R. W. (1987) Foundations of cognitive grammar, vol. I. Stanford University Press. [aRG]Google Scholar
Langacker, R. W. (1990) Concept, image and symbol: The cognitive basis of grammar. Mouton de Gruyter. [aRG]Google Scholar
Langacker, R. W. (1991) Foundations of cognitive grammar, vol. II. Stanford University Press. [aRG]Google Scholar
Langacker, R. W. (1999a) Grammar and conceptualization. Mouton de Gruyter. [aRG]Google Scholar
Langacker, R. W. (1999b) Viewing in cognition and Grammar. In: Grammar and conceptualization. (Cognitive Linguistics Research 14.) Mouton de Gruyter. [rRG]Google Scholar
Lashley, K. S. (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior, ed. Jeffress, L. A.. Wiley. [MLL]Google Scholar
Latash, M. L. (1993) Control of human movement. Human Kinetics. [MLL]Google Scholar
Lewontin, R. C. (2001) The triple helix: Gene, organism, and environment. Harvard University Press. [HW]Google Scholar
Liepmann, H. (1905) Die Linke Hemisphaere und das Handlen. Muenchener Medizinische Wochenschrift 48:2322–26, 49:2375–78. [BT]Google Scholar
Llinas, R. & Pare, D. (1991) On dreaming and wakefulness. Neuroscience 44(3):521–35. [aRG]Google Scholar
Lotze, M., Montoya, P., Erb, M., Hulsmann, E., Flor, H., Klose, U., Birbaumer, N. & Grodd, W. (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience 11:491501. [BT]Google Scholar
Luenberger, D. (1971) An introduction to observers. IEEE Transactions on Automatic Control 36(5):456–60. [DMM]Google Scholar
Luria, A. R. (1973) The working brain: An introduction to neuropsychology. Penguin. [OW]Google Scholar
Mach, E. (1896) Contributions to the analysis of sensations. Open Court. [aRG]Google Scholar
Mahoney, M. J. & Avener, M. (1987) Psychology of the elite athlete. An explorative study. Cognitive Therapy and Research 1:135–41. [NS]Google Scholar
Maravita, A., Spence, C. & Driver, J. (2003) Multisensory integration and the body schema: Close to hand and within reach. Current Biology 13:(R)531–39. [BT]Google Scholar
Marr, D. (1982) Vision. Freeman. [PG]Google Scholar
Mataric, M. (1992) Integration of representation into goal-driven behavior-based robots. IEEE Transactions on Robotics and Automation 8(3):304–12. [LAS, GS]Google Scholar
Matthews, P. B. C. (1959) The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. Journal of Physiology 47:521–46. [MLL]Google Scholar
Mehta, B. & Schaal, S. (2002) Forward models in visuomotor control. Journal of Neurophysiology 88(2):942–53. [aRG, MLL]Google Scholar
Mel, B. W. (1986) A connectionist learning model for 3-d mental rotation, zoom, and pan. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pp. 562–71. Erlbaum. [aRG]Google Scholar
Mel, B. W. (1988) MURPHY: A robot that learns by doing. In: Neural information processing systems, ed. Anderson, D. Z.. American Institute of Physics. [aRG]Google Scholar
Mel, B. W. (1991) A connectionist model may shed light on neural mechanisms for visually guided reaching. Journal of Cognitive Neuroscience 3(3):273–92. [OW]Google Scholar
Meltzoff, A. N. & Moore, K. M. (1977) Imitation of facial and manual gestures by human neonates. Science 198:7578. [VS]Google Scholar
Merfeld, D. M. (1995a) Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. Acta Oto-Laryngologica (Supplement) 520:354–59. [DMM]Google Scholar
Merfeld, D. M. (1995b) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Experimental Brain Research 106:123–34. [DMM]Google Scholar
Merfeld, D. M., Young, L., Oman, C. & Shelhamer, M. (1993) A multi-dimensional model of the effect of gravity on the spatial orientation of the monkey. Journal of Vestibular Research 3:141–61. [DMM]Google Scholar
Merfeld, D. M. & Zupan, L. H. (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. Journal of Neurophysiology 87(2):819–33. [DMM]Google Scholar
Merfeld, D. M., Zupan, L. H. & Peterka, R. (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–18. [DMM]Google Scholar
Miall, R. C. (1998) The cerebellum, predictive control and motor coordination. Sensory Guidance of Movement, Novartis Foundation Symposium 218:272–90. [EMH]Google Scholar
Miall, R. C. & Wolpert, D. M. (1996) Forward models for physiological motor control. Neural Networks 9(8):1265–79. [TGC]Google Scholar
Miles, C. F. & Rogers, D. (1993) A biologically motivated associative memory architecture. International Journal of Neural Systems 4(2):109–27. [aRG]Google Scholar
Millikan, R. G. (1984) Language, thought, and other biological categories. MIT Press. [GS]Google Scholar
Millikan, R. G. (1993) White Queen psychology and other essays for Alice. MIT Press. [GS]Google Scholar
Milner, A. D. & Goodale, M. A. (1996) Visual brain in action. Oxford University Press. [VG]Google Scholar
Mohl, B. (1989) Short-term learning during flight control in Locusta migratoria. Journal of Comparative Physiology A163:803–12. [BW]Google Scholar
Nair, D. G., Purcott, K. L., Fuchs, A., Steinberg, F. & Kelso, J. A. (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: A functional MRI study. Brain Research. Cognitive Brain Research 15:250–60. [OD]Google Scholar
Naito, E., Ehrsson, H. H., Geyer, S., Zilles, K. & Roland, P. E. (1999) Illusory arm movements activate cortical motor areas: A PET study. Journal of Neuroscience 19:6134–44. [NS]Google Scholar
Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y. & Sadato, N. (2002) Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. Journal of Neuroscience 22:3683–91. [aRG, NS]Google Scholar
Newton, N. (1996) Foundations of understanding. John Benjamins. [NN] Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S. & Ric, F. (in press) Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review. [CLR]Google Scholar
Niedenthal, P. M., Brauer, M., Halberstadt, J. B. & Innes-Ker, A. H. (2001) When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cognition and Emotion 15:853–64. [CLR]Google Scholar
Nolfi, S. & Tani, J. (1999) Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 11(2):129–52. [aRG]Google Scholar
Oman, C. (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Oto-Laryngologica (Suppl.) 392:144. [DMM]Google Scholar
Oman, C. (1990) Motion sickness: A synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology 68(2):294303. [DMM]Google Scholar
Oman, C. (1991) Sensory conflict in motion sickness: An observer theory approach. In: Pictorial communication in virtual and real environments, ed. Ellis, S., pp. 362–76. Taylor & Francis. [DMM]Google Scholar
O’Regan, K. & Noë, A. (2001) A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5):939–73. [GS]Google Scholar
O’Reilly, R. & Munakata, Y. (2000) Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. MIT Press. [FCG]Google Scholar
Ostry, D. J. & Feldman, A. G. (2003) A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research 153:275–88. [RB, MLL]Google Scholar
Palmer, S. (1978) Fundamental aspects of cognitive representation. In: Cognition and categorization, ed. Rosch, E. & Lloyd, B. B.. Erlbaum. [HW]Google Scholar
Parsons, L. M. & Fox, P. T. (1998) The neural basis of implicit movements used in recognizing hand shape. Cognitive Neuropsychology 15:583615. [BT]Google Scholar
Pavani, F., Spence, C. & Driver, J. (2000) Visual capture of touch: Out-of-the-body experiences with rubber gloves. Psychological Science 11:353–59. [BT]Google Scholar
Pellizzer, G., Sargent, P. & Georgopoulos, A. P. (1995) Motor cortical activity in a context-recall task. Science 269:702705. [BT]Google Scholar
Piaget, J. (1947) La psychologie de l’intelligence. Armand Colin. [OW]Google Scholar
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D. & Rossetti, Y. (2000) An “automatic pilot” for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience 3(7):729–36. [VG]Google Scholar
Poeck, K. (1964) Phantoms following amputation in early childhood and in congenital absence of limbs. Cortex 1:269–75. [VS]Google Scholar
Poeck, K. & Orgass, B. (1971) The concept of the body schema: A critical review and some experimental results. Cortex 7(3):254–77. [VS]Google Scholar
Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., Bazzocchi, M. & di Prampero, P. E. (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: A functional magnetic resonance imaging study. Journal of Neuroscience 16:7688–98. [BT]Google Scholar
Poulet, J. F. A. & Hedwig, B. (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–76. [BW]Google Scholar
Povinelli, D. J. (2000) Folk physics for apes. Oxford University Press. [PG]Google Scholar
Powers, W. T. (1973) Behavior: The control of perception. Aldine. [JSJ]Google Scholar
Pylyshyn, Z. W. (2001) Visual indexes, preconceptual objects, and situated vision. Cognition 80(12):127–58. [aRG]Google Scholar
Quaia, C., Lefevre, P. & Optican, L. M. (1999) Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology 82(2):9991018. [TGC]Google Scholar
Rao, R. P. N. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987. [aRG, VG]Google Scholar
Reason, J. (1977) Learning to cope with atypical force environments. In: Adult learning, ed. Howe, M., pp. 203–22. Wiley. [DMM]Google Scholar
Reason, J. (1978) Motion sickness adaptation: A neural mismatch model. Journal of the Royal Society of Medicine 71:819–29. [DMM]Google Scholar
Reed, C. (2002a) Chronometric comparisons of imagery to action: Visualizing versus physically performing springboard dives. Memory and Cognition 30(8):1169–78. [OD, CLR]Google Scholar
Reed, C. (2002b) What is the body schema? In: The imitative mind, ed. Meltzoff, A. & Prinz, W., pp. 233–46. Cambridge University Press. [VS]Google Scholar
Reed, C. L. & O’Brien, C. F. (1996) Motor imagery deficit in patients with Parkinson's Disease. Paper presented at the 3rd meeting of the Cognitive Neuroscience Society, San Francisco, 1996. [CLR]Google Scholar
Reisberg, D. & Chambers, D. (1991) Neither pictures nor propositions: What can we learn from a mental image? Canadian Journal of Psychology 45:366–52. [MWi]Google Scholar
Reisberg, D., Smith, J. D., Baxter, D. A. & Sonenshine, M. (1989) “Enacted” auditory images are ambiguous; “Pure” auditory images are not. Quarterly Journal of Experimental Psychology: Human Experimental Psychology 41A:619–41. [MWi]Google Scholar
Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., Georgopoulos, A. P., Tegeler, C., Ugurbil, K. & Kim, S. G. (2000) Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience 12(2):310–20. [aRG, BT]Google Scholar
Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. (1999) Resonance behaviors and mirror neurons. Archives Italiennes de Biologie 137(23):85100. [TGC]Google Scholar
Roland, P. E., Skinhoj, E., Lassen, N. A. & Larsen, B. (1980) Different cortical areas in man in organization of voluntary movements in extrapersonal space. Journal of Neurophysiology 43:137–50. [BT]Google Scholar
Ross, H. E. (1966) Sensory information necessary for the size-weight illusion. Nature 212:650. [EMH]Google Scholar
Ross, H. E. & Gregory, R. L. (1970) Weight illusions and weight discrimination: A revised hypothesis. Quarterly Journal of Experimental Psychology 22:318–28. [EMH]Google Scholar
Rozin, P. (1976) The evolution of intelligence and access to the cognitive unconscious. In: Progress in psychobiology and physiological psychology, vol.6, ed. Sprague, J. M. & Epstein, A. N., pp. 245–80. Academic Press. [OW]Google Scholar
Rumelhart, D. E. & Norman, D. A. (1988) Representation in memory. In: Stevens’ handbook of experimental psychology, ed. Atkinson, R. C., Herrnstein, R. J., Lindzey, G. & Luce, R. D.. Wiley. [HW]Google Scholar
Rumiati, R. I., Tomasino, B., Vorano, L., Umiltà, C. & de Luca, G. (2001) Selective deficit of imagining finger configurations. Cortex 37:730–33. [BT]Google Scholar
Ryle, G. (1949) The concept of mind. Barnes and Noble. [NN]Google Scholar
Sadato, N., Campbell, G., Ibanez, V., Deiber, M. & Hallett, M. (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience 16(8):2691–700. [TH]Google Scholar
Sathian, K., Prather, S. C. & Zhang, M. (2004) Visual cortical involvement in normal tactile perception. In: The handbook of multisensory processes, ed. Calvert, G., Spence, C. & Stein, B., pp. 703709. MIT Press. [KS]Google Scholar
Scholz, J. P., Schöner, G. & Latash, M. L. (2000) Identifying the control structure of multi-joint coordination during pistol shooting. Experimental Brain Research 135:382404. [RB]Google Scholar
Schroeder, C. E. & Foxe, J. J. (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research 14:187–98. [KS]Google Scholar
Schubotz, R. I. & von Cramon, D. Y. (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Cognitive Brain Research 11:97112. [RIS]Google Scholar
Schubotz, R. I. & von Cramon, D. Y. (2002) Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: An fMRI study. Neuroimage 15:787–96. [RIS]Google Scholar
Schubotz, R. I. & von Cramon, D. Y. (2003) Functional-anatomical concepts of human premotor cortex: Evidence from fMRI and PET studies. NeuroImage 20:S120S131. (Special Issue). [RIS]Google Scholar
Schubotz, R. I., von Cramon, D. Y. & Lohmann, G. (2003) Auditory what, where, and when: A sensory somatotopy in lateral premotor cortex. Neuroimage 20:173–85. [RIS]Google Scholar
Schwartz, D. L. (1999) Physical imagery: Kinematic versus dynamic models. Cognitive Psychology 38:433–64. [aRG]Google Scholar
Schwoebel, J., Boronat, C. B. & Coslett, H. B. (2002) The man who executed “imagined” movements: Evidence for dissociable components of the body schema. Brain and Cognition 50:116. [VG]Google Scholar
Servos, P., Matin, L. & Goodale, M. A. (1995) Dissociation between two modes of spatial processing by a visual form agnosic. NeuroReport 6:1893–96. [VG, rRG]Google Scholar
Servos, P., Osu, R., Santi, A. & Kawato, M. (2002) The neural substrates of biological motion perception: An fMRI study. Cerebral Cortex 12:772–82. [OD]Google Scholar
Shadmehr, R. & Wise, S. P. (2003) Motor learning and memory for reaching and pointing. In: The new cognitive neurosciences, 3rd edition, ed. Gazzaniga, M. S.. MIT Press. [OD]Google Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701703. [TD]Google Scholar
Siegal, M. & Varley, R. (2002) Neural systems involved in “theory of mind.” Nature Reviews. Neuroscience 3:463–71. [OD]Google Scholar
Sirigu, A. & Duhamel, J. R. (2001) Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience 13:910–19. [VG, BT]Google Scholar
Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B. & Agid, Y. (1996) The mental representation of hand movements after parietal cortex damage. Science 273(5281):1564–68. [VG, BT]Google Scholar
Smyrnis, N., Taira, M., Ashe, J. & Georgopoulos, A. P. (1992) Motor cortical activity in a memorized delay task. Experimental Brain Research 92:139–51. [BT]Google Scholar
Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. (1998) Separate bodyand world-referenced representations of visual space in parietal cortex. Nature 394:887–91. [KS]Google Scholar
Spencer, J. P. & Schöner, G. (2003) Bridging the representational gap in the dynamic systems approach to development. Developmental Science 6(4): 392–412. [FCG]Google Scholar
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by vision inversion. Journal of Comparative and Physiological Psychology 43:482–89. [DMM, BW]Google Scholar
Stein, B. E. & Meredith, M. A. (1993) Merging of the senses. MIT Press. [KS]Google Scholar
Stein, L. A. (1994) Imagination and situated cognition. Journal of Experimental and Theoretical Artificial Intelligence 6:393407. [aRG, LAS]Google Scholar
Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos- Baumann, A. O., Frith, C. D. & Frackowiack, R. S. J. (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology 73:373–86. [BT]Google Scholar
Sternad, D. (2002) Wachholder, K & Altenburger, H (1927) Foundational experiments for current hypotheses on equilibrium point control in voluntary movements. Motor Control 6:299318. [Historical overview, English translation, and commentaries on Wachholder & Altenburger 1927 by D. Sternad.] [MLL]Google Scholar
Stojanov, G. (1997 ) Expectancy theory and interpretation of electroexpectograms (EXG) curves in the context of biological and machine intelligence. Ph.D. Thesis, Electrical Engineering Faculty, Saints Cyril and Methodius University, Skopje, Macedonia. [GS]Google Scholar
Stojanov, G., Bozinovski, S. & Bozinovska, L. (1996) AV control system which makes use of environment stabilizations. In: SPIE Proceedings, vol. 2903: Mobile Robots XI and Automated Vehicle Control Systems, ed. Kenyon, C. H. & Kachroo, P., pp. 4451. SPIE. [GS]Google Scholar
Stojanov, G., Bozinovski, S. & Trajkovski, G. (1997a) Interactionist expectative view on agency and learning. IMACS Journal of Mathematics and Computers in Simulation 44:295310. [GS]Google Scholar
Stojanov, G., Bozinovski, S. & Trajkovski, G. (1997b) The status of representation in behaviour based robotic systems: The problem and a solution. Paper presented at the IEEE Conference on Systems, Man, and Cybernetics, Orlando, FL, 1997. [GS]Google Scholar
Stojanov, G., Stefanovski, S. & Bozinovski, S. (1995) Expectancy based emergent environment models for autonomous agents. Proceedings of the 5th International Symposium on Automatic Control and Computer Science, Iasi, Romania 1:217–21. [GS]Google Scholar
Sutton, R. S. & Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press. [HW]Google Scholar
Tagaris, G. A., Richter, W., Kim, S-G., Pellizzer, G. & Anderson, P. (1998) Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews 26:106–12. [BT]Google Scholar
Talmy, L. (2000a) Fictive motion in language and ‘ception’. In: Toward a cognitive semantics, vols. 1 & 2, ed. Talmy, L.. MIT Press. [rRG]Google Scholar
Talmy, L. (2000b) Toward a cognitive semantics. MIT Press. [aRG]Google Scholar
Tarsitano, M. S. & Andrew, R. (1999) Scanning and route selection in the jumping spider Portia labiata. Animal Behaviour 280:255–65. [BW]Google Scholar
Thelen, E., Schöner, G., Scheier, C. & Smith, L. B. (2001) The dynamics of embodiment: A dynamic field theory of infant perseverative reaching errors. Behavioral and Brain Sciences 24:186. [FCG]Google Scholar
Thomassen, A. J. W. M. & Tibosch, H. J. C. M. (1991) A quantitative model of graphic production. In: Tutorials in motor neuroscience, ed. Stelmach, G. E. & Requin, J.. Kluwer. [ADS]Google Scholar
Todorov, E. & Jordan, M. I. (2002) Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5:1226–35. [VG]Google Scholar
Tomasello, M. (1999) The cultural origins of human cognition. Harvard University Press. [PG]Google Scholar
Tomasino, B., Borroni, P., Isaja, A., Baldiserra, F. & Rumiati, R. I. (in press) The primary motor cortex subserves not only movements but also their imagination. Cognitive Neuropsychology. [BT]Google Scholar
Turvey, M. T. (1990) Coordination. American Psychologist 45:938–53. [RB]Google Scholar
Tversky, B. (2000) Remembering spaces. In: The Oxford handbook of memory, ed. Tulving, E. & Craik, F. I. M.. Oxford University Press. [HW]Google Scholar
Ungerleider, L. G. & Haxby, J. V. (1994) “What” and “where” in the human brain. Current Opinion in Neurobiology 4(2):157–65. [aRG]Google Scholar
van Beers, R. J., Sittig, A. C. & Gon, J. J. (1999) Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology 81:1355–64. [VG]Google Scholar
van Beers, R. J., Wolpert, D. M. & Haggard, P. (2002) When feeling is more important than seeing in sensorimotor adaptation. Current Biology 12:834–37. [VG]Google Scholar
van der Meulen, J. H. P., Gooskens, R. H. J. M., van der Gon, J. J. D., Gielen, C. C. A. M. & Wilhelm, K. (1990) Mechanisms underlying accuracy in fast goaldirected arm movements in man. Journal of Motor Behavior 22(1):6784. [aRG]Google Scholar
van Galen, G. P. (1980) Handwriting and drawing: A two stage model of complex motor behaviour. In: Tutorials in motor behaviour, ed. Stelmach, G. E. & Requin, J.. North-Holland. [ADS]Google Scholar
van Hoek, K. (1995) Conceptual reference points: A cognitive grammar account of pronominal anaphora constraints. Language 71(2):310–40. [aRG]Google Scholar
van Hoek, K. (1997) Anaphora and conceptual structure. University of Chicago Press. [aRG]Google Scholar
van Pabst, J. V. L. & Krekel, P. F. C. (1993) Multi sensor data fusion of points, line segments and surface segments in 3D space. In: 7th International Conference on Image Analysis and Processing, Capitolo, Monopoli, Italy, pp. 174–82. World Scientific. [aRG]Google Scholar
van Sommers, P. (1984) Drawing and cognition. Cambridge University Press. [ADS]Google Scholar
van Sommers, P. (1989) A system for drawing and drawing-related neuropsychology. Cognitive Neuropsychology 6:117–64. [ADS]Google Scholar
Vandervert, L. (1995) Chaos theory and the evolution of consciousness and mind: A thermodynamic-holographic resolution to the mind-body problem. New Ideas in Psychology 13(2):107–27. [JSJ]Google Scholar
Verfaillie, K. & Daems, A. (2002) Representing and anticipating human actions in vision. Visual Cognition 9:217–32. [MWi]Google Scholar
Verfaillie, K., de Troy, A. & van Rensbergen, J. (1994) Transsaccadic integration of biological motion. Journal of Experimental Psychology: Learning, Memory, and Cognition 20:649–70. [MWi]Google Scholar
Verfaillie, K. & d’Ydewalle, G. (1991) Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology: Learning, Memory, and Cognition 17:302–13. [MWi]Google Scholar
Vinter, A. (1994) Hierarchy among graphic production rules: A developmental approach. In: Advances in handwriting and drawing: A multidisciplinary approach, ed. Faure, C., Keuss, P., Lorette, G. & Vinter, A.. Europia. [ADS]Google Scholar
Vinter, A. & Perruchet, P. (1999) Isolating unconscious influences: The neutral parameter procedure. Quarterly Journal of Experimental Psychology 52A:857– 75. [ADS]Google Scholar
Viviani, P. & Stucchi, N. (1989) The effect of movement velocity on form perception: Geometric illusions in dynamic displays. Perception and Psychophysics 46(3):266–74. [VG]Google Scholar
Viviani, P. & Stucchi, N. (1992) Biological movements look uniform: Evidence of motor-perceptual interactions. Journal of Experimental Psychology: Human Perception and Performance 18(3):603–23. [VG]Google Scholar
von Helmholtz, H. (1910) Handbuch der physiologischen optik, vol. 3, 3rd edition, ed. Gullstrand, A., von Kries, J. & Nagel, W.. Voss. [aRG]Google Scholar
von Holst, E. (1954) Relations between the central nervous system and the peripheral organs. British Journal of Animal Behavior 2:8994. [DMM, OW]Google Scholar
von Holst, E. & Mittelstädt, H. (1950/1973) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnerven-system und Peripherie. Naturwissenschaften 37:467–76. (Original German publication, 1950.) English translation, 1973: The reafference principle. In: The behavioral physiology of animals and man. The collected papers of Erich von Holst, trans. R. Martin, pp. 139–73. University of Miami Press. [JSJ, MLL, DMM, BW]Google Scholar
von Uexkull, J. (1926) Theoretische Biologie. Suhrkamp. [DMM]Google Scholar
Wachholder, K. & Altenburger, H. (1927/2002) Do our limbs have only one rest length. Simultaneously a contribution to the measurement of elastic forces in active and passive movements. Pflüger's Archive für die gesamte Physiologie 215:627–40. (English translation by D. Sternard, 2002.) [see trans. in Sternad 2002]. [MLL]Google Scholar
Wachholder, K. & Altenburger, H. (2002) Foundational experiments for current hypotheses on equilibrium point control in voluntary movements. Motor Control 6:299318. (English translation by D. Sternard, 2002.) [MLL]Google Scholar
Walter, C. B., Swinnen, S. P., Dounskaia, N. & van Langendonk, H. (2001) Systematic error in the organization of physical action. Cognitive Science 25:393422. [CBW]Google Scholar
Wang, H., Johnson, T. R. & Zhang, J. (2001) The mind's views of space. In: Proceedings of the Third International Conference of Cognitive Science. Beijing. [HW]Google Scholar
Jr.Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P. & Sahuc, S. (2001) Optic flow is used to control human walking. Nature Neuroscience 4:213–16. [MLL]Google Scholar
Weinstein, S. & Sersen, E. (1961) Phantoms in cases of congenital absence of limbs. Neurology 11:905–11. [VS]Google Scholar
Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002) Motion illusions as optimal percepts. Nature Neuroscience 5:598604. [VG]Google Scholar
Wellman, H. M. (1990) The child's theory of mind. MIT Press. [aRG]Google Scholar
Wexler, M. & Klam, F. (2001) Movement prediction and movement production. Journal of Experimental Psychology: Human Perception and Performance 27:4864. [MW]Google Scholar
Wexler, M., Kosslyn, S. M. & Berthoz, A. (1998) Motor processes in mental rotation. Cognition 68:7794. [aRG, VG, MW]Google Scholar
Wexler, M., Panerai, F., Lamouret, I. & Droulez, J. (2001) Self-motion and the perception of stationary objects. Nature 409:8588. [MW]Google Scholar
Wickens, T. D. (1993) Analysis of contingency tables with between-subjects variability. Psychological Bulletin 113:191204. [ADS]Google Scholar
Wiener, N. (1950) The human use of human beings: Cybernetics and society. Houghton Mifflin. [VG]Google Scholar
Wiener, O. (1988) Form and content in thinking Turing machines. In: The universal Turing machine, ed. Herken, R., pp. 631–57. Oxford University Press. [OW]Google Scholar
Wiener, O. (1996) Schriften zur Erkenntnistheorie. Springer. [OW]Google Scholar
Wiener, O. (1998) “Klischee” als Bedingung intellektueller und künstlerischer Kreativität. In: Literarische Aufsätze, pp. 113–38. Löcker. [OW]Google Scholar
Wiener, O. (2000) Materialien zu meinem Buch “Vorstellungen.” Ausschnitt 5, ed. Lesak, F.. Technische Universität Wien. [OW]Google Scholar
Wiener, O. (2002) Anekdoten zu “Struktur.” Ausschnitt 7, ed. Lesak, F., pp. 3045. Technische Universität Wien. [OW] (forthcoming) Vorstellungen. Springer. [OW]Google Scholar
Wilson, M. (2001) Perceiving imitatible stimuli: Consequences of isomorphism between input and output. Psychological Bulletin 127:543–53. [MWi]Google Scholar
Wise, S. P., Moody, S. L., Blomstrom, K. J. & Mitz, A. R. (1998) Changes in motor cortical activity during visuomotor adaptation. Experimental Brain Research 121:285–99. [BT]Google Scholar
Wohlschläger, A. (1998) Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance 24:397412. [MW]Google Scholar
Wohlschläger, A. (2001) Mental object rotation and the planning of hand movements. Perception and Psychophysics 63:709–18. [ADS]Google Scholar
Wolpert, D. M., Ghahramani, Z. & Flanagan, J. R. (2001) Perspectives and problems in motor learning. Trends in Cognitive Sciences 5(11):487–94. [aRG]Google Scholar
Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. (1995) An internal model for sensorimotor integration. Science 269:1880–82. [aRG, VG, EMH, MLL, CBW]Google Scholar
Wolpert, D. M & Kawato, M. (1998) Multiple paired forward and inverse models for motor control. Neural Networks 11(78):1317–29. [rRG]Google Scholar
Wraga, M., Church, J. & Badre, D. (2002) Event-related fMRI study of imaginal self and object rotations. Journal of Cognitive Neuroscience 104:144. [ADS]Google Scholar
Xing, J. & Andersen, R. A. (2000) Models of posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience 12:601–14. [rRG]Google Scholar
Yang, Y. & Bringsjord, S. (2003) Mental metalogic and its empirical justifications: The case of reasoning with quantifiers and predicates. Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society, ed. Alterman, R. & Kirsch, D., pp. 1275–80. Lawrence Erlbaum Associates. [HW]Google Scholar
Yantis, S. (1992) Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology 24(3):295340. [aRG]Google Scholar
Zacharias, G. L. & Young, L. R. (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Experimental Brain Research 41:159–71. [DMM]Google Scholar
Zajac, F. E., Neptune, R. R. & Kautz, S. A. (2002) Biomechanics and muscle coordination of human walking. Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture 16:215–32. [RB]Google Scholar
Zajonc, R. B. & Markus, H. (1984) Affect and cognition: The hard interface. In: Emotions, cognition, and behavior, ed. Izard, C., Kagan, J. & Zajonc, R. B., pp. 73102. Cambridge University Press. [CLR]Google Scholar
Zaretsky, M. & Rowell, C. H. F. (1979) Saccadic suppression by corollary discharge in the locust. Nature 280:583–85. [BW]Google Scholar
Zhang, J. (1997) The nature of external representations in problem solving. Cognitive Science 21(2):179217. [HW]Google Scholar
Zhang, J. & Norman, D. A. (1994) Representations in distributed cognitive tasks. Cognitive Science 18:87122. [HW]Google Scholar
Zupan, L., Droulez, J., Darlot, C., Denise, P. & Maruani, A. (1994) Modelization of vestibulo-ocular reflex (VOR) and motion sickness prediction. Paper presented at the International Congress on Application of Neural Networks, Sorrento, Italy, 1994. [DMM]Google Scholar
Zupan, L. H. & Merfeld, D. M. (2003) Neural processing of gravito-inertial cues in humans, IV. Influence of visual rotational cues during roll optokinetic stimuli. Journal of Neurophysiology 89(1):390400. [DMM]Google Scholar
Zupan, L., Merfeld, D. M. & Darlot, C. (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86:209–30. [DMM]Google Scholar
Zupan, L., Peterka, R. & Merfeld, D. (2000) Neural processing of gravito-inertial cues in humans: I. Influence of the semicircular canals following post-rotatory tilt. Journal of Neurophysiology 84:2001–15. [DMM]Google Scholar