Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T12:40:27.340Z Has data issue: false hasContentIssue false

Evolution of neuroendocrine mechanisms linking attachment and life history: The social neuroendocrinology of middle childhood

Published online by Cambridge University Press:  12 February 2009

Mark V. Flinn
Affiliation:
Department of Anthropology, University of Missouri, Columbia, MO 65211Flinnm@missouri.edu
Michael P. Muehlenbein
Affiliation:
Department of Anthropology, Indiana University, Bloomington, IN 47405mpm1@indiana.edu
Davide Ponzi
Affiliation:
Neurobiology Program, Department of Biological Sciences, University of Missouri, Columbia, MO 65211. depr29@mizzou.edu

Abstract

An extended period of childhood and juvenility is a distinctive aspect of human life history. This stage appears to be important for learning cultural, social, and ecological skills that help prepare the child for the adult socio-competitive environment. The unusual pattern of adrenarche in humans (and chimpanzees) may facilitate adaptive modification of the neurobiological mechanisms that underpin reproductive strategies. Longitudinal monitoring of DHEA/S in naturalistic context could provide important new insights into these aspects of child development.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2003) Cognitive neuroscience of human social behavior. Nature Reviews/Neuroscience 4:165–79.Google Scholar
Arlt, W., Callies, F. & Allolio, B. (2000) DHEA replacement in women with adrenal insufficiency – pharmokinetics, bioconversion, and clinical effects on well-being, sexuality and cognition. Endocrine Research 26:505–11.CrossRefGoogle Scholar
Barker, D. J. (1998) In utero programming of chronic disease. Clinical Science 95:115–28.Google Scholar
Belsky, J. (2002) Developmental origins of attachment styles. Attachment and Human Development 4:166–70.CrossRefGoogle ScholarPubMed
Bjorklund, D. F. & Pellegrini, A. D. (2002) The origins of human nature: Evolutionary developmental psychology. American Psychological Association Press.Google Scholar
Bogin, B. (1999) Evolutionary perspective on human growth. Annual Review of Anthropology 28:109–53.CrossRefGoogle ScholarPubMed
Campbell, B. C. (2006) Adrenarche and the evolution of human life history. American Journal of Human Biology 18:569–89.CrossRefGoogle ScholarPubMed
Chen, C. C. G. & Parker, C. R. Jr. (2004) Adrenal androgens and the immune system. Seminars in Reproductive Medicine 22:369–77.Google Scholar
Chugani, H. T. (1998) Critical period of brain development: Studies of cerebral glucose utilization with PET. Preventive Medicine 27:184–88.Google Scholar
Compagnone, N. A. & Mellon, S. H. (1998) Dehydroepiandrosterone: A potential signaling molecule for neocortical organization during development. Proceedings of the National Academy of Sciences USA 95:4678–83.Google Scholar
Dhom, G. (1973) The prepubertal and pubertal growth of the adrenal (adrenarche). Beitrage Pathologie 150:357–77.CrossRefGoogle Scholar
Draper, P. & Harpending, H. (1982) Father absence and reproductive strategy: An evolutionary perspective. Journal of Anthropological Research 38:255–73.CrossRefGoogle Scholar
Ellis, B. J. & Essex, M. J. (2007) Family environments, adrenarche, and sexual maturation: A longitudinal test of a life history model. Child Development 78:1799–817.CrossRefGoogle ScholarPubMed
Flinn, M. V. (2006) Evolution and ontogeny of stress response to social challenges in the human child. Developmental Review 26:138–74.CrossRefGoogle Scholar
Flinn, M. V., Geary, D. C. & Ward, C. V. (2005) Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior 26(1):1046.CrossRefGoogle Scholar
Geary, D. C. (2005b) The origin of mind. American Psychological Association.Google Scholar
Geary, D. C. & Bjorklund, D. F. (2000) Evolutionary developmental psychology. Child Development 71:5765.CrossRefGoogle ScholarPubMed
Geary, D. C. & Flinn, M. V. (2002) Sex differences in behavioral and hormonal response to social threat. Psychological Review 109(4):745–50.Google Scholar
Gluckman, P. D. & Hanson, M. A. (2006) Evolution, development and timing of puberty. Trends in Endocrinology and Metabolism 17:712.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L. & Thompson, P. M. (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA 101:817–19.Google Scholar
Hennebert, O., Chalbot, S., Alran, S. & Morfin, R. (2007) Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: Possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. Journal of Steroid Biochemistry and Molecular Biology 104:326–33.Google Scholar
Karishma, K. K. & Herbert, J. (2002) Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. European Journal of Neuroscience 16:445–53.Google Scholar
Kimonides, V. G., Spillantini, M. G., Sofroniew, M. V., Fawcett, J. W. & Herbert, J. (1999) Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 89:429–36.CrossRefGoogle ScholarPubMed
Labrie, F., Belanger, A., Luu-The, V., Labrie, C., Simard, J., Cusan, L., Gomez, J. L. & Candas, B. (1998) DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: Its role during aging. Steroids 63: 322–28.Google Scholar
Majewska, M., Demigoren, S., Spivak, C. E. & London, E. D. (1990) The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAa receptor. Brain Research 526:143–46.Google Scholar
Micheal, A., Jenaway, A., Paykel, E. S. & Herbert, J. (2000) Altered salivary dehydroepiandrosterone levels in major depression in adults. Biological Psychiatry 48:989–95.CrossRefGoogle Scholar
Muehlenbein, M. P. & Bribiescas, R. G. (2005) Testosterone-mediated immune functions and male life histories. American Journal of Human Biology 17:527–58.Google Scholar
Muehlenbein, M. P., Richards, R. J., Campbell, B. C., Phillippi, K. M., Murchison, M. A., Myers, L. & Svec, F. (2003) Dehydroepiandrosterone-sulfate as a biomarker of senescence in male non-human primates. Experimental Gerontology 38:1077–85.CrossRefGoogle ScholarPubMed
Nguyen, A. D. & Conley, A. J. (2008) Adrenal androgens in humans and non-human primates: Production, zonation, and regulation. In: Disorders of the human adrenal cortex, ed. Flück, C.E. & Miller, W. L.. Special issue of Endocrine Development 13:3354.CrossRefGoogle Scholar
Ong, K. K., Potau, N., Petry, C. J., Jones, R., Ness, A. R., ALSPAC Study Team, Honour, J. W., de Zegher, F., Ibanez, L. & Dunger, D. B. (2004) Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. Journal of Clinical Endocrinology and Metabolism 89:2647–51.CrossRefGoogle ScholarPubMed
Orentreich, N., Brind, J. L., Rizer, R. L. & Vogelman, J. H. (1984) Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism 59:551–55.Google Scholar
Palmert, M. R., Hayden, D. L., Mansfield, J., Crigler, J. F., Crowley, W. F., Chandler, D. W. & Boepple, P. A. (2001) The longitudinal study of adrenal maturation during gonadal suppression: Evidence that adrenarche is a gradual process. Journal of Clinical Endocrinology and Metabolism 86:4536–42.CrossRefGoogle ScholarPubMed
Quinlan, R. J. & Flinn, M. V. (2003) Intergenerational transmission of conjugal stability. Journal of Comparative Family Studies 34:569–84.CrossRefGoogle Scholar
Quinlan, R. J., Quinlan, M. B. & Flinn, M. V. (2003) Parental investment and age at weaning in a Caribbean village. Evolution and Human Behavior 24:116.Google Scholar
Rainey, W. E., Carr, B. R., Sasano, H., Suzuki, T. & Mason, J. I. (2002) Dissecting human adrenal androgen production. Trends in Endocrinology and Metabolism 13:234–39.Google Scholar
Remer, T., Boye, K. R., Hartmann, M. F. & Wudy, S. A. (2005) Urinary markers of adrenarche: Reference values in healthy subjects, aged 3–18 years. Journal of Clinical Endocrinology and Metabolism 90(4):2015–21.Google Scholar
Roth, G. & Dicke, U. (2005) Evolution of the brain and intelligence. Trends in Cognitive Sciences 9(5):250–57.CrossRefGoogle ScholarPubMed
Sulcova, J., Hill, M., Hampl, R. & Starka, L. (1997) Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulfate in normal subjects. Journal of Endocrinology 154:5762.CrossRefGoogle ScholarPubMed
Tanner, J. M. (1978) Fetus into man: Physical growth from conception to maturity. Harvard University Press.Google Scholar
Weinstock, M. (2005) The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior and Immunity 19:296308.Google Scholar
West-Eberhard, M. J. (2003) Developmental plasticity and evolution. Oxford University Press.Google Scholar
Zemel, B. S. & Katz, S. H. (1986) The contribution of adrenal and gonadal androgens to the growth in height of adolescent males. American Journal of Physical Anthropology 71:459–66.CrossRefGoogle Scholar