Skip to main content Accessibility help
×
Home

Beyond metaphors and semantics: A framework for causal inference in neuroscience

  • Roberto A. Gulli (a1)

Abstract

The long-enduring coding metaphor is deemed problematic because it imbues correlational evidence with causal power. In neuroscience, most research is correlational or conditionally correlational; this research, in aggregate, informs causal inference. Rather than prescribing semantics used in correlational studies, it would be useful for neuroscientists to focus on a constructive syntax to guide principled causal inference.

Copyright

References

Hide All
Anderson, A. A. (2019) Assessing statistical results: Magnitude, precision, and model uncertainty. The American Statistician 73 (supp1.):118–21. doi:10.1080/00031305.2018.1537889.
Baayen, R. H., Davidson, D. J. & Bates, D. M. (2008) Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59(4):390412. doi:10.1016/j.jml.2007.12.005.
Caton, R. (1875) The electric currents of the brain.” In: Proceedings of the Forty-Third Annual Meeting of the British Medical Association, August 1875, Edinburgh. British Medical Journal 2:257. doi:10.1136/bmj.2.765.257.
Dodds, W. J. (1878) Localisation of functions of the brain: Being an historical and critical analysis of the question. Journal of Anatomy and Physiology 12(Pt. 4):636–60.
Ferrier, D. (1886) Functions of the brain, 2nd edition. G. P. Putnam's Sons.
Goense, J. B. M. & Logothetis, N. K. (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology 18(9):631–40. doi:10.1016/j.cub.2008.03.054.
Haugeland, J. (1985) Artificial intelligence. MIT Press.
Hill, A. B. (1965) The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58(5):295300.
Jazayeri, M., & Afraz, A. (2017) Navigating the neural space in search of the neural code. Neuron 93(5):1003–14. doi:10.1016/j.neuron.2017.02.019.
Marinescu, I. E., Lawlor, P. N.and Konrad, P., Kording, K. P. (2018) Quasi-experimental causality in neuroscience and behavioural research. Nature Human Behaviour 2(12):891–98. doi:10.1038/s41562-018-0466-5.
Pearl, J., Glymour, M. & Jewell, N. P. (2016) Causal inference in statistics. Wiley.
Phillips, C.V. & Goodman, K. J. (2004) The missed lessons of Sir Austin Bradford Hill. Epidemiologic Perspectives & Innovations 1:Article 3. doi:10.1186/1742-5573-1-3.
Rougier, J. (2019) p-Values, Bayes factors, and sufficiency. The American Statistician 73(supp1):148–51. doi:10.1080/00031305.2018.1502684.
Saxena, S. & Cunningham, J. P. (2019) Towards the neural population doctrine. Current Opinion in Neurobiology 55:103–11. doi:10.1016/j.conb.2019.02.002.
Sejnowski, T. J., Churchland, P. S. & Movshon, J. A. (2014) Putting big data to good use in neuroscience. Nature Neuroscience 17(11):1440–1. doi:10.1038/nn.3839.
Song, L., Langfelder, P. & Horvath, S. (2013) Random generalized linear model: A highly accurate and interpretable ensemble predictor. BMC Bioinformatics 14(1):5. doi:10.1186/1471-2105-14-5.
Wang, H. & Yang, J. (2016) Multiple confounders correction with regularized linear mixed effect models, with application in biological processes. bioRxiv, November. Cold Spring Harbor Laboratory, 089052. doi:10.1101/089052.

Beyond metaphors and semantics: A framework for causal inference in neuroscience

  • Roberto A. Gulli (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed