Skip to main content Accessibility help
×
Home

Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning

  • Pierre-Yves Oudeyer (a1)

Abstract

Autonomous lifelong development and learning are fundamental capabilities of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives.

Copyright

References

Hide All
Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y. & Yoshida, C. (2009) Cognitive developmental robotics: A survey. IEEE Transactions on Autonomous Mental Development 1(1):1234.
Baldassarre, G. & Mirolli, M., eds. (2013) Intrinsically motivated learning in natural and artificial systems. Springer.
Baranes, A. & Oudeyer, P.-Y. (2013) Active learning of inverse models with intrinsically motivated goal exploration in robots. Robotics and Autonomous Systems 61(1):4973.
Baranes, A. F., Oudeyer, P. Y. & Gottlieb, J. (2014) The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration. Frontiers in Neurosciences 8:19.
Barto, A. (2013) Intrinsic motivation and reinforcement learning. In: Intrinsically motivated learning in natural and artificial systems, ed. Baldassarre, G. & Mirolli, M., pp. 1747. Springer.
Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D. & Munos, R. (2016) Unifying count-based exploration and intrinsic motivation. Presented at the 2016 Neural Information Processing Systems conference, Barcelona, Spain, December 5–10, 2016. In: Advances in neural information processing systems 29 (NIPS 2016), ed. Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I. & Garnett, R., pp. 1471–79. Neural Information Processing Systems.
Cangelosi, A. & Schlesinger, M. (2015) Developmental robotics: From babies to robots. MIT Press.
Chernova, S. & Thomaz, A. L. (2014) Robot learning from human teachers. Synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool.
Collins, S., Ruina, A., Tedrake, R. & Wisse, M. (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–85.
Flash, T., Hochner, B. (2005) Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology 15(6):660–66.
Forestier, S. & Oudeyer, P.-Y. (2016) Curiosity-driven development of tool use precursors: A computational model. In: Proceedings of the 38th Annual Conference of the Cognitive Science Society, Philadelphia, PA, ed. Papafragou, A., Grodner, D., Mirman, D. & Trueswell, J. C., pp. 18591864. Cognitive Science Society.
Gottlieb, J., Oudeyer, P-Y., Lopes, M. & Baranes, A. (2013) Information seeking, curiosity and attention:Computational and neural mechanisms. Trends in Cognitive Science 17(11):585–96.
Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D. & Kavukcuoglu, K. (2016) Reinforcement learning with unsupervised auxiliary tasks. Presented at the 5th International Conference on Learning Representations, Palais des Congrès Neptune, Toulon, France, April 24–26, 2017. arXiv preprint 1611.05397. Available at: https://arxiv.org/abs/1611.05397.
Kidd, C., Piantadosi, S. T. & Aslin, R. N. (2012) The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One 7(5):e36399.
Kulkarni, T. D., Narasimhan, K. R., Saeedi, A. & Tenenbaum, J. B. (2016) Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. arXiv preprint 1604.06057. Available at: https://arxiv.org/abs/1604.06057.
Lopes, M. & Oudeyer, P.-Y. (2012) The strategic student approach for life-long exploration and learning. In: IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), San Diego, CA, November 7–9, 2012, pp. 18. IEEE.
Moulin-Frier, C., Nguyen, M. & Oudeyer, P.-Y. (2014) Self-organization of early vocal development in infants and machines: The role of intrinsic motivation. Frontiers in Psychology 4:1006. Available at: http://dx.doi.org/10.3389/fpsyg.2013.01006.
Nguyen, M. & Oudeyer, P.-Y. (2013) Active choice of teachers, learning strategies and goals for a socially guided intrinsic motivation learner, Paladyn Journal of Behavioural Robotics 3(3):136–46.
Nguyen-Tuong, D. & Peters, J. (2011) Model learning for robot control: A survey. Cognitive Processing 12(4):319–40.
Oudeyer, P.-Y. (2016) What do we learn about development from baby robots? WIREs Cognitive Science 8(1–2):e1395. Available at: http://www.pyoudeyer.com/oudeyerWiley16.pdf. doi: 10.1002/wcs.1395.
Oudeyer, P.-Y., Baranes, A. & Kaplan, F. (2013) Intrinsically motivated learning of real-world sensorimotor skills with developmental constraints. In: Intrinsically motivated learning in natural and artificial systems, ed. Baldassarre, G. & Mirolli, M., pp. 303–65. Springer.
Oudeyer, P.-Y., Kaplan, F. & Hafner, V. (2007) Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation 11(2):265–86.
Oudeyer, P-Y. & Smith, L. (2016) How evolution may work through curiosity-driven developmental process. Topics in Cognitive Science 8(2):492502.
Pfeifer, R., Lungarella, M. & Iida, F. (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–93.
Schmidhuber, J. (1991) Curious model-building control systems. Proceedings of the IEEE International Joint Conference on Neural Networks 2:1458–63.
Vollmer, A-L., Mühlig, M., Steil, J. J., Pitsch, K., Fritsch, J., Rohlfing, K. & Wrede, B. (2014) Robots show us how to teach them: Feedback from robots shapes tutoring behavior during action learning, PLoS One 9(3):e91349.
Yamada, Y., Mori, H. & Kuniyoshi, Y. (2010) A fetus and infant developmental scenario: Self-organization of goal-directed behaviors based on sensory constraints. In: Proceedings of the 10th International Conference on Epigenetic Robotics, Őrenäs Slott, Sweden, pp. 145–52. Lund University Cognitive Studies.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed