Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-24T04:32:29.279Z Has data issue: false hasContentIssue false

The Emperor Is Naked: Replies to commentaries on the target article

Published online by Cambridge University Press:  29 September 2022

Jelle Bruineberg
Department of Philosophy, Macquarie University, Sydney, NSW 2109,
Krzysztof Dołęga
Institut für Philosophie II, Fakultät für Philosophie und Erziehungswissenschaft, Ruhr-Universität Bochum, 44801 Bochum,
Joe Dewhurst
Fakultät für Philosophie, Wissenschaftstheorieund Religionswissenschaft, Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität München, 80539 Munich,
Manuel Baltieri
Araya, Inc., Tokyo, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK


The 35 commentaries cover a wide range of topics and take many different stances on the issues explored by the target article. We have organised our response to the commentaries around three central questions: Are Friston blankets just Pearl blankets? What ontological and metaphysical commitments are implied by the use of Friston blankets? What kind of explanatory work are Friston blankets capable of? We conclude our reply with a short critical reflection on the indiscriminate use of both Markov blankets and the free energy principle.

Authors’ Response
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aguilera, M., Millidge, B., Tschantz, A., & Buckley, C. L. (2021). How particular is the physics of the free energy principle? Physics of Life Reviews.Google ScholarPubMed
Allen, M., & Friston, K. (2018). From cognitivism to autopoiesis: Towards a computational framework for the embodied mind. Synthese, 195(6), 24592482.CrossRefGoogle ScholarPubMed
Anderson, H. C. (1837). The Emperor's New Clothes. English translation by Jean Hersholt available at Scholar
Baltieri, M., & Isomura, T. (2021). Kalman filters as the steady-state solution of gradient descent on variational free energy. arXiv preprint, arXiv:2111.10530.Google Scholar
Beer, R. D. (2004). Autopoiesis and cognition in the game of life. Artificial Life, 10(3), 309326.CrossRefGoogle ScholarPubMed
Beer, R. D. (2014). The cognitive domain of a glider in the game of life. Artificial Life, 20(2), 183206.CrossRefGoogle ScholarPubMed
Beer, R. D. (2020). An investigation into the origin of autopoiesis. Artificial Life, 26(1), 522.CrossRefGoogle ScholarPubMed
Biehl, M., Pollock, F. A., & Kanai, R. (2021). A technical critique of some parts of the free energy principle. Entropy, 23(3), 293.CrossRefGoogle ScholarPubMed
Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599. ScholarPubMed
Bruineberg, J., & Rietveld, E. (2019). What's inside your head once you've figured out what your head's inside of. Ecological Psychology, 31(3), 198217.CrossRefGoogle Scholar
Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley.Google Scholar
Da Costa, L., Friston, K., Heins, C., & Pavliotis, G. A. (2021). Bayesian mechanics for stationary processes. Proceedings of the Royal Society A, 477(2256), 20210518.CrossRefGoogle ScholarPubMed
Di Paolo, E., Thompson, E., & Beer, R. (2022). Laying down a forking path: Tensions between enaction and the free energy principle. Philosophy and the Mind Sciences, 3, 139.CrossRefGoogle Scholar
Flesch, I., & Lucas, P. (2007). Independence decomposition in dynamic Bayesian networks. In European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (pp. 560–571). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Frankfurt, F. (2005). On bullshit. Princeton University Press.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138.CrossRefGoogle ScholarPubMed
Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.CrossRefGoogle Scholar
Friston, K. (2019). A free energy principle for a particular physics. arXiv preprint, arXiv:1906.10184.Google Scholar
Friston, K., Da Costa, L., Sajid, N., Heins, C., Ueltzhöffer, K., Pavliotis, G. A., & Parr, T. (2022). The free energy principle made simpler but not too simple. arXiv preprint, arXiv:2201.06387.Google Scholar
Friston, K., Heins, C., Ueltzhöffer, K., Da Costa, L., & Parr, T. (2021b). Stochastic chaos and Markov blankets. Entropy, 23(9), 1220.CrossRefGoogle Scholar
Friston, K., Wiese, W., & Hobson, J. A. (2020). Sentience and the origins of consciousness: From Cartesian duality to Markovian monism. Entropy, 22(5), 516.CrossRefGoogle ScholarPubMed
Friston, K. J., Da Costa, L., & Parr, T. (2021a). Some interesting observations on the free energy principle. Entropy, 23, 1076.CrossRefGoogle Scholar
Friston, K. J., Fagerholm, E. D., Zarghami, T. S., Parr, T., Hipólito, I., Magrou, L., & Razi, A. (2021c). Parcels and particles: Markov blankets in the brain. Network Neuroscience, 5(1), 211251.CrossRefGoogle Scholar
Friston, K. J., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017a). Active inference: A process theory. Neural Computation, 29(1), 149.CrossRefGoogle Scholar
Friston, K. J., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1), 7087.CrossRefGoogle ScholarPubMed
Friston, K. J., Parr, T., & de Vries, B. (2017b). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1(4), 381414.CrossRefGoogle Scholar
Friston, K. J., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 6(4), 187214.CrossRefGoogle ScholarPubMed
Isomura, T., Shimazaki, H., & Friston, K. J. (2022). Canonical neural networks perform active inference. Communications Biology, 5(1), 115.CrossRefGoogle ScholarPubMed
Jonas, H. (1966). The phenomenon of life: Toward a philosophical biology. Northwestern University Press.Google Scholar
Kim, E. J. (2021). Information geometry, fluctuations, non-equilibrium thermodynamics, and geodesics in complex systems. Entropy, 23(11), 1393.CrossRefGoogle ScholarPubMed
Koster, J. T. (1999). On the validity of the Markov interpretation of path diagrams of Gaussian structural equations systems with correlated errors. Scandinavian Journal of Statistics, 26(3), 413431.CrossRefGoogle Scholar
Lanillos, P., Meo, C., Pezzato, C., Meera, A. A., Baioumy, M., Ohata, W., … Tani, J. (2021). Active inference in robotics and artificial agents: Survey and challenges. arXiv preprint, arXiv:2112.01871.Google Scholar
Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint, arXiv:1801.00631.Google Scholar
Materassi, D., & Salapaka, M. V. (2014). Notions of separation in graphs of dynamical systems. IFAC Proceedings Volumes, 47(3), 23412346. Scholar
Mazzaglia, P., Verbelen, T., Çatal, O., & Dhoedt, B. (2022). The free energy principle for perception and action: A deep learning perspective. Entropy, 24(2), 301.CrossRefGoogle ScholarPubMed
Menary, R., & Gillett, A. J. (2020). Are Markov blankets real and does It matter? In Mendonca, D., Curado, M., & Gouveia, S. S. (Eds.), The philosophy and science of predictive processing (pp. 3958). Bloomsbury Academic.Google Scholar
Millidge, B., Seth, A., & Buckley, C. L. (2021). Predictive coding: A theoretical and experimental review. arXiv preprint, arXiv:2107.12979.Google Scholar
Millidge, B., Tschantz, A., Seth, A. K., & Buckley, C. L. (2020). On the relationship between active inference and control as inference. In Verbelen, T., Lanillos, P., Buckley, C. L., & De Boom, C. (Eds.), Active Inference. IWAI 2020. Communications in Computer and Information Science (Vol. 1326, pp. 311). Springer. Scholar
Parr, T., Da Costa, L., Heins, C., Ramstead, M. J. D., & Friston, K. J. (2021). Memory and Markov blankets. Entropy, 23(9), 1105.CrossRefGoogle ScholarPubMed
Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5), 495513.CrossRefGoogle ScholarPubMed
Pearl, J. (2009). Causality. Cambridge University Press.CrossRefGoogle Scholar
Pearl, J., Geiger, D., & Verma, T. (1989). Conditional independence and its representations. Kybernetika, 25(7), 3344.Google Scholar
Pearl, J., & Mackenzie, D. (2018). The book of why. Basic Books.Google Scholar
Ramstead, M., Friston, K., & Hipólito, I. (2020). Is the free-energy principle a formal theory of semantics? From variational density dynamics to neural and phenotypic representations. Entropy, 22(8), 889.CrossRefGoogle ScholarPubMed
Reed, E. S. (1989). Neural regulation of adaptive behavior: An essay review of neural Darwinism. Ecological Psychology, 1(1), 97117. Scholar
Reed, E. S. (1996). Encountering the world: Toward an ecological psychology. Oxford University Press.Google Scholar
Rosas, F. E., Mediano, P. A., Biehl, M., Chandaria, S., & Polani, D. (2020). Causal blankets: Theory and algorithmic framework. In International workshop on active inference (pp. 187198). Springer.CrossRefGoogle Scholar
Spratling, M. W. (2016). Predictive coding as a model of cognition. Cognitive Processing, 17(3), 279305.CrossRefGoogle ScholarPubMed
Wheeler, J. A. (1982). The computer and the universe. International Journal of Theoretical Physics, 21(6–7), 557572.CrossRefGoogle Scholar
Wolfram, S. (2002). A new kind of science. Wolfram Media.Google Scholar
Zuse, K. (1982). The computing universe. International Journal of Theoretical Physics, 21(6–7), 589600.CrossRefGoogle Scholar