Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.809 Render date: 2022-05-27T21:31:21.033Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

An interdisciplinary approach to brain evolution: A long due debate

Published online by Cambridge University Press:  12 April 2004

Francisco Aboitiz*
Affiliation:
Departamento de Psiquiatría and Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile; and Millennium Nucleus for Integrative Neuroscience, Marcoleta 387, 2° piso, Casilla 114-D, Santiago 1, Chile
Daniver Morales*
Affiliation:
Developmental Neurobiology Laboratory, The Rockefeller University, New York, NY10021
Juan Montiel*
Affiliation:
Departamento de Psiquiatría and Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile; and Millennium Nucleus for Integrative Neuroscience, Marcoleta 387, 2° piso, Casilla 114-D, Santiago 1, Chile

Abstract:

A dorsalization mechanism is a good candidate for the evolutionary origin of the isocortex, producing a radial and tangential expansion of the dorsal pallium (and perhaps other structures that acquired a cortical phenotype). Evidence suggests that a large part of the dorsal ventricular ridge (DVR) of reptiles and birds derives from the embryonic ventral pallium, whereas the isocortex possibly derives mostly from the dorsal pallium. In early mammals, the development of olfactory-hippocampal associative networks may have been pivotal in facilitating the selection of a larger and more complex dorsal pallium which received both collothalamic and lemnothalamic sensory information. Finally, although it is not clear exactly when mammalian brain expansion began, fossil evidence indicates that this was a late event in mammaliaform evolution.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbie, A. A. (1940) Cortical lamination in the monotremata. Journal of Comparative Neurology 72:428–67. [ABB]Google Scholar
Aboitiz, F. (1988) Homology: A comparative or a historical concept? Acta Biotheoretica 37:2729. [rFA]Google Scholar
Aboitiz, F. (1990) Behavior, body types and the irreversibility of evolution. Acta Biotheoretica 38:91101. [rFA]Google Scholar
Aboitiz, F. (1992) The evolutionary origin of the mammalian cerebral cortex. Biological Research 25:4149. [arFA]Google Scholar
Aboitiz, F. (1995) Homology in the evolution of the cerebral hemispheres: The case of reptilian dorsal ventricular ridge and its possible correspondence with mammalian neocortex. Journal of Brain Research 4:461–72. [arFA]Google Scholar
Aboitiz, F. (1999a) Evolution of isocortical organization. A tentative scenario including roles of reelin, p35/cdk5 and the subplate zone. Cerebral Cortex 9:655–61. [arFA]Google Scholar
Aboitiz, F. (1999b) Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge. Evolutionary considerations. Cerebral Cortex 9:783–91. [aFA]Google Scholar
Aboitiz, F. (2001) The evolution of cortical development. Trends in Neurosciences 24:202203. [aFA]Google Scholar
Aboitiz, F. & Montiel, J. (2001) Anatomy of “mesencephalic” dopaminergic cell groups in the central nervous system. In: Mechanisms of degeneration and protection of the dopaminergic system, ed. Segura-Aguilar, J. Graham, F. P.. [aFA]Google Scholar
Aboitiz, F., Montiel, J. & López, J. (2001a) An hypothesis on the early evolution of the develoment of the isocortex. Brain Research Bulletin 57:481–83. [aFA]Google Scholar
Aboitiz, F., Montiel, J., Morales, D. & Concha, M. (2002) Evolutionary divergence of the reptilian and the mammalian brains. Considerations on connectivity and development. Brain Research Reviews 39:141–53. [rFA]Google Scholar
Aboitiz, F., Morales, D. & Montiel, J. (2001b) The inverted neurogenetic gradient of the mammalian isocortex: Development and evolution. Brain Research Reviews 38:129–39. [arFA]Google Scholar
Abramson, B. P. & Chalupa, L. M. (1988) Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. Journal of Comparative Neurology 271:397418. [OG]Google Scholar
Acámpora, D. & Simeone, A. (1999) Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends in Neuroscience 22:116–22. [aFA]Google Scholar
Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. Journal of Comparative Neurology 419:377–93. [OG]Google Scholar
Ahissar, E. (1998) Temporal-code to rate-code conversion by neuronal phaselocked loops. Neural Computation 10:597650. [H-V]Google Scholar
Allendoerfer, K. L. & Shatz, C. J. (1994) The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annual Review of Neuroscience 17:185218. [aFA, HS]Google Scholar
Allman, J. (1977) Evolution of the visual system in the early primates. In: Progress in psychobiology and physiological psychology, vol. VII, ed. Sprague, J. M. & Epstein, A. N. Academic Press. [ABB]Google Scholar
Altman, J. & Bayer, S. A. (1981) Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Experimental Brain Research 42:424–34. [OG, AR]Google Scholar
Alvarez, P., Lipton, P. A., Melrose, R. & Eichenbaum, H. (2001) Differential effects of damage within the hippocampal region on memory for a natural, nonspatial odor-odor association. Learning and Memory 8:7986. [aFA]Google Scholar
Alvarez, P., Zola-Morgan, S. & Squire, L. R. (1995) Damage limited to the hippocampal region produces long-lasting impairment in monkeys. Journal of Neuroscience 15:3796–807. [MC]Google Scholar
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. (1997a) Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes. Science 278:474–76. [aFA]Google Scholar
Anderson, S. A. Marín, O., Horn, C., Jennings, K. & Rubenstein, J. L. R. (2001) Distinct cortical migrations from the medial and the lateral ganglionis eminences. Development 128:353–63. [aFA, DAF]Google Scholar
Anderson, S. A., Mione, M., Yun, K. & Rubenstein, J. L. R. (1999) Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis. Cerebral Cortex 9:646–54. [aFA]Google Scholar
Anderson, S. A., Qiu, M., Bulfone, A., Eisenstat, D. D., Meneses, J., Pedersen, R. & Rubenstein, J. L. R. (1997b) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:2737. [aFA]Google Scholar
Angevine, J. B. & Sidman, R. L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–68. [aFA]Google Scholar
Ariëns Kappers, C. V., Huber, C. G. & Crosby, E. C. (1936) The comparative anatomy of the nervous system of vertebrates, including man. Hafner. [aFA]Google Scholar
Avigan, M. R. & Powers, A. S. (1995) The effects of MK-801 injections and dorsal cortex lesions on maze learning in turtles (Chrysemys picta). Psychobiology 23:6368. [ASP]Google Scholar
Bach, M. E., Hawkins, R. D., Osman, M., Kandel, E. R. & Mayford, M. (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81:905–15. [H-V]Google Scholar
Bannerman, D. M., Yee, B. K., Lemaire, M., Wilbrecht, L., Jarrard, L., Iversen, S. D., Rawlins, J. N. & Good, M. A. (2001) The role of the entorhinal cortex in two forms of spatial learning and memory. Experimental Brain Research 141:281303. [ASP]Google Scholar
Bar, I., Lambert De Rouvroit, C. & Goffinet, A. (2000) Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. Journal of Comparative Neurology 413:463–79. [aFA]Google Scholar
Barkai, E. & Hasselmo, M. H. (1997) Acetylcholine and associative memory in the piriform cortex. Molecular Neurobiology 15:1729. [H-V]Google Scholar
Behan, M. & Haberly, L. B. (1999) Intrinsic and efferent connections of the endopiriform nucleus of the rat. Journal of Comparative Neurology 408:532–48. [aFA]Google Scholar
Belekhova, M. G. & Ivazov, N. I. (1983) Analysis of the conduction of visual, somatic and audiovibrational sensory information of the hippocampal cortex in the lizard. Neurofiziologiia 15:153–60. [FM-G]Google Scholar
Bellion, A., Wassef, M. & Metin, C.(2003) Early differences in axonal outgrowth, cell migration and GABAergic differentiation properties between the dorsal and lateral cortex. Cerebral Cortex 13:203–14. [rFA]Google Scholar
Benjamin, R. M., Jackson, J. C., Golden, G. T. & West, C. H. K. (1982) Sources of olfactory input to opossum mediodorsal nucleus identified by horseradish peroxidase and autoradiographic methods. Journal of Comparative Neurology 207: 358–68. [aFA]Google Scholar
Berkley, K. J. (1973) Response properties of cells in ventrobasal and posterior group nuclei of the cat. Journal of Neurophysiology 36:940–52. [OG]Google Scholar
Berkley, K. J., Budell, R. J., Blomquist, A. & Bull, M. (1986) Output systems of dorsal column nuclei in cat. Brain Research Bulletin 11:199225. [OG]Google Scholar
Bernier, B., Bar, I., Pieau, C., Lambert De Rouvroit, C. & Goffinet, A. M. (1999) Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. Journal of Comparative Neurology 413:463–79. [rFA]Google Scholar
Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L. R. & O’Leary, D. D. M. (2003) Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. Journal of Comparative Neurology 457:345–60. [rFA, LM]Google Scholar
Bishop, K. M., Goudreau, G. & O’Leary, D. D. M. (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–49. [aFA, FM-G, LM]Google Scholar
Blau, A. & Powers, A. S. (1989) Discrimination learning in turtles after lesions of the dorsal cortex or basal forebrain. Psychobiology 17:445–49. [ASP]Google Scholar
Bond, J., Roberts, E., Mochida, G. H., Hampshire, D. J., Scott, S., Askham, J. M., Springell, K., Mahadevan, M., Crow, Y. J., Markham, A. F., Walsh, C. A., & Woods, C. G. (2002) ASPM is a major determinant of cerebral cortical size. Nature Genetics 32:316–20. [aFA]Google Scholar
Braford, M. R. Jr., ed. (1995) Evolution of the forebrain. Sixth Annual Karger Workshop. Brain, Behaviour and Evolution 46:185338. [RGN]Google Scholar
Brauth, S. E. (1990) Histochemical strategies in the study of neural evolution. Brain, Behaviour and Evolution 36:100–15. [aFA]Google Scholar
Bressler, S. L., Coppola, R. & Nakamura, R. (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–56. [H-V]Google Scholar
Bruce, L. L. & Butler, A. B. (1984a) Telencephalic connections in lizards: I. Projections to cortex. Journal of Comparative Neurology 229:585601. [FM-G, ASP]Google Scholar
Bruce, L. L. & Butler, A. B. (1984b) Telencephalic connections in lizards: II. Projections to anterior dorsal ventricular ridge. Journal of Comparative Neurology 229:602–15. [DAF]Google Scholar
Bruce, L. L., Kornblum, H. I. & Seroogy, K. B. (2002) Comparison of thalamic populations in mammals and birds: Expression of ErbB4 mRNA. Brain Research Bulletin 57:455–61. [AR]Google Scholar
Bruce, L. L. & Neary, T. J. (1995) The limbic system of tetrapods: A comparative analysis of cortical and amygdalar populations. Brain, Behavior and Evolution 46:224–34. [aFA, OG, TS]Google Scholar
Bullock, T. H. & Heiligenberg, W., eds. (1986) Electroreception. Wiley. [RGN]Google Scholar
Bunsey, M. & Eichenbaum, H. (1996) Conservation of hippocampal memory function in rats and humans. Nature 379:255–57. [aFA]Google Scholar
Burton, S., Murphy, D., Qureshi, U., Sutton, P. & O’Keefe, J. (2000) Combined lesions of hippocampus and subiculum do not produce deficits in a nonspatial social olfactory memory task. Journal of Neuroscience 20:5468 –75. [aFA]Google Scholar
Bussey, T. J., Saksida, L. M. & Murray, E. A. (2003) Impairments in visual discrimination after perirhinal cortex lesions: Testing “declarative” vs. “perceptual-mnemonic” views of perirhinal cortex function. European Journal of Neuroscience 17:649–60. [H-V]Google Scholar
Butler, A. B. (1994a) The evolution of the dorsal pallium in the telencephalon of amniotes: Cladistic analysis and a new hypothesis. Brain Research. Brain Research Reviews 19:66101. [arFA, ABB, DAF, ASP, AR, CS, TS]Google Scholar
Butler, A. B. (1994b) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: A cladistic analysis and a new hypothesis. Brain Research. Brain Research Reviews 19:2965. [arFA, ABB, DAF, TS]Google Scholar
Butler, A. B. (1995) The dorsal thalamus of jawed vertebrates: A comparative viewpoint. Brain, Behavior and Evolution 46:209–23. [ABB]Google Scholar
Butler, A. B. & Hodos, W. (1996) Comparative vertebrate neuroanatomy: Evolution and adaptation. Wiley-Liss. [ASP]Google Scholar
Butler, A. B. & Molnár, Z. (2002) Development and evolution of the collopallium in amniotes: A new hypothesis of field homology. Brain Research Bulletin 57:475–79. [aFA, ABB, OG, RGN, TS]Google Scholar
Butler, A. B., Molnár, Z. & Manger, P. R. (2002) Apparent absence of claustrum in monotremes: Implications for forebrain evolution in amniotes. Brain, Behavior and Evolution 60:230–40. [ABB, AR]Google Scholar
Butler, A. B. & Saidel, W. M. (2000) Defining sameness: Historical, biological and generative homology. Bioessays 22:846–53. [rFA]Google Scholar
Cairney, J. (1926) A general survey of the forebrain of Sphenodon punctatum. Journal of Comparative Neurology 42:255348. [RGN]Google Scholar
Canteras, N. S. & Swanson, L. W. (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat. Journal of Comparative Neurology 324:180–94. [MB]Google Scholar
Caric, D., Gooday, D., Hill, R. E., McConnell, S. K., Price, D. J. (1997) Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124:5087–96. [aFA]Google Scholar
Carpenter, M. B. (1991) Core text of neuroanatomy, 4th edition. Williams & Wilkins. [GO]Google Scholar
Carroll, R. L. (1988) Vertebrate paleontology and evolution. Freeman Press. [aFA, DAF]Google Scholar
Carvalho, I. S. (2000) Paleontologia. Interciência Edition. [DAF]Google Scholar
Casanova, C., Merabet, L., Desautels, A. & Minville, K. (2001) Higher-order motion processing in the pulvinar. Progress in Brain Research 134:7182. [OG]Google Scholar
Cassim, F., Labyt, E., Devos, D., Defebvre, L., Destee, A. & Derambure, P. (2002) Relationship between oscillations in the basal ganglia and synchronization of cortical activity. Epileptic Disorders 4(Suppl 3):3145. [H-V]Google Scholar
Catalano, S. M., Robertson, R. T. & Killackey, H. P. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. Journal of Comparative Neurology 366:3653. [HS]Google Scholar
Catalano, S. M. & Shatz, C. J. (1998) Activity-dependent cortical target selection by thalamic axons. Nature 281:559–62. [HS]Google Scholar
Catania, K. C. (2000) Cortical organization in insectivora: The parallel evolution of the sensory periphery and the brain. Brain, Behaviour and Evolution 55:311–21. [EG]Google Scholar
Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E. & Tsai, L. H. (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:2942. [aFA]Google Scholar
Chapouton, P., Gärtner, A. & Götz, M. (1999) The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development 126:5569–79. [aFA]Google Scholar
Chenn, A. & Walsh, C. A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–69. [aFA]Google Scholar
Cobos, I., Puelles, L. & Martínez, S. (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Developmental Biology 239:3045. [aFA]Google Scholar
Colombo, M. & Broadbent, N. (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neuroscience and Biobehavioral Reviews 24:465–84. [MC]Google Scholar
Colombo, M., Cawley, S. & Broadbent, N. (1997a) The effects of hippocampal and area parahippocampalis lesions in pigeons: II. Concurrent discrimination and spatial memory. Quarterly Journal of Experimental Psychology 50B:172–89. [MC]Google Scholar
Colombo, M., Swain, N., Harper, D. & Alsop, B. (1997b) The effects of hippocampal and area parahippocampalis lesions in pigeons: I. Delayed matching to sample. Quarterly Journal of Experimental Psychology 50B:149–71. [MC]Google Scholar
Cookson, K. (2001) Field homology: A meaningful definition. European Journal of Morphology 39:3945. [RGN]Google Scholar
Cordery, P. & Molnár, Z. (1999) Embryonic development of connections in turtle pallium. Journal of Comparative Neurology 413:2654. [arFA]Google Scholar
Corwin, J. V., Fussinger, M., Meyer, R. C., King, V. R. & Reep, R. L. (1994) Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats. Behavioral Brain Research 61:7986. [MB]Google Scholar
Cranney, J. & Powers, A. S. (1983) The effects of core nucleus and cortical lesions in turtles on reversal and dimensional shifting. Physiological Psychology 11:103–11. [ASP]Google Scholar
Cruce, W. L. R. & Cruce, J. A. F. (1975) Projections from the retina to the lateral geniculate nucleus and mesencephalic tectum in a reptile (Tupinambis nigropunctatus): A comparison of anterograde transport and anterograde degeneration. Brain Research 85:221–28. [FM-G]Google Scholar
Curran, T. & D’Arcangelo, G. (1998) Role of reelin in the control of brain development. Brain Research Reviews 26:285–94. [aFA]Google Scholar
Davidson, E. H. (2001) Genomic regulatory systems: Development and evolution. Academic Press. [DAF]Google Scholar
Dávila, J. C., Andreu, M. J., Real, M. A., Puelles, L. & Guirado, S. (2002) Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus. European Journal of Neuroscience 16:267–82. [aFA, OG]Google Scholar
Dávila, J. C., Guirado, S. & Puelles, L. (2000) Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. Journal of Comparative Neurology 427:6792. [aFA, ABB, FM-G, OG, AR]Google Scholar
Day, L. B., Crews, D. & Wilczynski, W. (1999) Relative medial and dorsal cortex volume in relation to foraging ecology in congeneric lizards. Brain, Behaviour and Evolution 54:314–22. [aFA]Google Scholar
Day, L. B., Crews, D. & Wilczynski, W. (2001) Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behavioural Brain Research 118:2742. [aFA, ASP]Google Scholar
Deacon, T. W., Eichenbaum, H., Rosenberg, P. & Eckmann, K. W. (1983) Afferent connections of the perirhinal cortex in the rat. Journal of Comparative Neurology 220:168–90. [MB]Google Scholar
Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. (2001) Cell cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. Journal of Neuroscience 21:201–14. [LM]Google Scholar
Desan, P. H. (1988) Organization of the cerebral cortex in turtle. In: The forebrain of reptiles. Current concepts on structure and function, ed. Schwerdtfeger, W. K. & Smeets, W. J. A. J. Karger. [FM-G]Google Scholar
Donoghue, J. P. & Parham, C. (1983) Afferent connections of the lateral agranular field of the rat motor cortex. Journal of Comparative Neurology 217:390404. [H-V]Google Scholar
Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A. & Anton, E. S. (2000) Reelin binds alpha3 beta1 integrin and inhibits neuronal migration. Neuron 27:3344. [aFA]Google Scholar
Dumbrava, D., Faubert, J. & Casanova, C. (2001) Global motion integration in the cat's lateral posterior-pulvinar complex. European Journal of Neuroscience 13:2218–26. [OG]Google Scholar
Dusek, J. A. & Eichenbaum, H. (1997) The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences USA 94:7109–14. [aFA]Google Scholar
Ebbesson, S. O. E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179212. [FM-G]Google Scholar
Ebbesson, S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral Brain Science 7:321–66. [HS]Google Scholar
Ebbesson, S. O. E. & Heimer, L. (1970) Projections of the olfactory tract fibers in the nurse shark (Ginglymostoma cirratum). Brain Research 17:4755. [aFA]Google Scholar
Ebner, F. F. (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Annals of the New York Academy of Sciences 167:241–57. [aFA]Google Scholar
Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A. (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–78. [H-V]Google Scholar
Eichenbaum, H. (1998) Using olfaction to study memory. Annals of the New York Academy of Sciences 855:657–69. [aFA]Google Scholar
Eichenbaum, H. (1999) The hippocampus and mechanisms of declarative memory. Behavioural Brain Research 103:123–33. [aFA]Google Scholar
Eichenbaum, H. (2000a) A cortical-hippocampal system for declarative memory, Nature Reviews Neuroscience 1:4150. [MB]Google Scholar
Eichenbaum, H. (2000b) Hippocampus: Mapping or memory? Current Biology 10:R785R787. [arFA]Google Scholar
Eichenbaum, H., Dudchenko, P., Wood, E. R., Shapiro, M. & Tanila, H. (1999) The hippocampus, place cells, and memory: Is it spatial memory or a memory space? Neuron 23:209–26. [aFA]Google Scholar
Eisthen, H. L. (1997) Evolution of vertebrate olfactory systems. Brain, Behaviour and Evolution 50:222–33. [CS]Google Scholar
Feldman, S. G. & Kruger, L. (1980) Axonal transport study of ascending projection of medial lemniscal neurons in rat. The Journal of Comparative Neurology 192:427–54. [OG]Google Scholar
Fernández, A., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: Implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–111. [TS]Google Scholar
Finlay, B. L. & Darlington, R. B. (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–84. [aFA]Google Scholar
Finlay, B. L., Hersman, M. N. & Darlington, R. B. (1998) Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain, Behavior and Evolution 52:232–42. [aFA]Google Scholar
Frahm, H. D. & Zilles, K. (1994) Volumetric comparison of hippocampal regions in 44 primate species. Journal of Brain Research 3:343–54. [HS]Google Scholar
Frank, L., Brown, E. N. & Wilson, M. (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–78. [aFA]Google Scholar
Fremouw, T., Jackson-Smith, P. & Kesner, R. P. (1997) Impaired place learning and unimpaired cue learning in hippocampal-lesioned pigeons. Behavioral Neuroscience 111:963–75. [MC]Google Scholar
Frost, B. J., Wylie, D. R. & Want, Y.-C. (1990) The processing of object and self-motion in the tectofugal and accessory optic pathway of birds. Vision Research 30:1677–88. [OG]Google Scholar
Frotscher, M. (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Current Opinion in Neurobiology 8:570–75. [aFA]Google Scholar
Fukuda, T., Kawano, H., Osumi, N., Eto, K. & Kawamura, K. (2000) Histogenesis of the cerebral cortex in rat fetuses with a mutation in the Pax-6 gene. Developmental Brain Research 120:6575. [aFA]Google Scholar
Gagliardo, A., Ioalé, P. & Bingman, V. P. (1999) Homing pigeons: The role of the hippocampal formation in the representation of landmarks used for navigation. Journal of Neuroscience 19:311–15. [CS]Google Scholar
Gagliardo, A., Mazzotto, M. & Bingman, V. P. (1996) Hippocampal lesion effects on learning strategies in homing pigeons. Proceedings of the Royal Society of London B 263:529–34. [aFA]Google Scholar
Galef, B. G. (1990) An adaptionist perspective on social learning, social feeding and social foraging in Norway rats. In: Contemporary issues in comparative psychology, ed. Dewsbury, D. A. Jr. Sinauer. [aFA]Google Scholar
Garda, A. L., Puelles, L., Rubenstein, J. L. R. & Medina, L. (2002) Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain organizers. Neuroscience 113:689–98. [LM]Google Scholar
Garstang, W. (1922) The theory of recapitulation: A critical restatement of the biogenetic law. Journal of the Linnaean Society (Zoology) London 35:81101. [aFA, RGN]Google Scholar
Gellon, G. & McGinnis, W. (1998) Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20:116–25. [aFA]Google Scholar
Gilmore, E. C. & Herrup, K. (2001) Neocortical cell migration: GABAergic neurons and cells in layers I and VI move in a cyclin-dependent kinase 5-independent manner. Journal of Neuroscience 21(24):9690–700. [aFA]Google Scholar
Goffinet, A. M., Bar, I., Bernier, B., Trujillo, C., Raynaud, A. & Meyer, G. (1999) Reelin expression during embryonic brain development in lacertilian lizards. Journal of Comparative Neurology 414:533–50. [rFA]Google Scholar
Goffinet, A. M., Daumerie, C., Langerwerf, B. & Pieau, C. (1986) Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. Journal of Comparative Neurology 243:106–16. [aFA]Google Scholar
Gonzalez, A., Russchen, F. T. & Lohman, A. H. M. (1990) Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Brain, Behavior and Evolution 36:3958. [SG]Google Scholar
González, G., Puelles, L. & Medina, L. (2002) Organization of the mouse dorsal thalamus based on topology, calretinin immunostaining, and gene expression. Brain Research Bulletin 57:439–42. [ABB]Google Scholar
Good, M. & Honey, R. C. (1991) Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience 105:499509. [MC]Google Scholar
Gorski, J. A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J. L. R. & Jones, K. R. (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the emx1-expressing lineage. Journal of Neuroscience 22:6309–14. [rFA, ABB, AR]Google Scholar
Götz, M., Stoykova, A. & Gruss, P. (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–44. [DAF]Google Scholar
Graham, J., Pearson, H. E., Berman, N. & Murphy, E. H. (1981) Laminar organization of superior colliculus in the rabbit: A study of receptive field properties of single units. Journal of Neurophysiology 45:915–32. [OG]Google Scholar
Grisham, W. & Powers, A. S. (1989) Function of the dorsal and medial cortex of turtles in learning. Behavioral Neuroscience 103:991–97. [ASP]Google Scholar
Grisham, W. & Powers, A. S. (1990) Effects of dorsal and medial cortex lesions on reversals in turtles. Physiology and Behavior 47:4349. [ASP]Google Scholar
Grossberg, S. (1999) How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 12:163–85. [AT]Google Scholar
Guirado, S. & Dávila, J. C. (2002) Thalamo-telencephalic connections: New insights on the cortical organization in reptiles. Brain Research Bulletin 57:451–54. [FM-G]Google Scholar
Guirado, S., Dávila, J. C., Real, M. A. & Medina, L. (2000) Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. Journal of Comparative Neurology 424:216–32. [arFA, DAF, SG, OG]Google Scholar
Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. (1996) Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex. European Journal of Neuroscience 8:1037–50. [aFA]Google Scholar
Guo, H., Hong, S., Jin, X. L., Chen, R. S., Avasthi, P. P., Tu, Y. T., Ivanco, T. L. & Li, Y. (2000) Specificity and efficiency of cre-mediated recombination in emx1-cre knock-in mice. Biochemical and Biophysical Research Communication 273:661–65. [AR]Google Scholar
Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. (2002) Life is a journey: A genetic look at neocortical development. Nature Reviews Genetics. 3:342–55. [aFA]Google Scholar
Haberly, L. B. (1990) Comparative aspects of olfactory cortex. In: Cerebral cortex, vol. 8 (Parts A and B), ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Haberly, L. B. & Price, J. L. (1978) Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the pyriform cortex and adjacent areas. Journal of Comparative Neurology 178:711–40. [aFA]Google Scholar
Hack, I., Bancilla, M., Loulier, K., Carroll, P. & Cremer, H. (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neuroscience 5:939–45.Google Scholar
Hagevik, A. & McClellan, A. D. (1994) Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. Journal of Neurophysiology 72:1810–29. [H-V]Google Scholar
Hall, J. A., Foster, R. E., Ebner, F. F. & Hall, W. C. (1977) Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta). Brain Research 130:197216. [ASP]Google Scholar
Hall, W. C. & Ebner, F. F. (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). Journal of Comparative Neurology 140:101–22. [FMG, ASP]Google Scholar
Hampson, R. E., Simeral, J. D. & Deadwyler, S. A. (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402:610–14. [aFA]Google Scholar
Hasselmo, M. E. (1999) Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Science 3:351–59. [H-V]Google Scholar
Hasselmo, M. E., Hay, J., Ilyn, M. & Gorchetchnikov, A. (2002) Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks 15(4–6):689707. [H-V]Google Scholar
Haug, H. (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals. American Journal of Anatomy 180:126–42. [rFA]Google Scholar
Hedin-Pereira, C., De Moraes, E. C. P., Santiago, M. F., Méndez-Otero, R. & Lent, R. (2000) Migrating neurons cross a reelin-rich territory to form an organized tissue out of embryonic cortical slices. European Journal of Neuroscience 12:4536–40. [aFA]Google Scholar
Heimer, L. (1970) Selective silver-impregnation of degenerating axons and their terminals. In: Contemporary research methods in neuroanatomy, ed. Nauta, W. J. H. & Ebbesson, S. O. E. Springer. [aFA]Google Scholar
Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K. L., Hack, M. A., Chapouton, P., Barde, Y. A. & Gotz, M. (2002) Glial cells generate neurons: The role of the transcription factor Pax6. Nature Neuroscience 5:308–15. [aFA]Google Scholar
Hellmann, B. & Güntürkün, O. (2001) The structural organization of parallel information processing within the tectofugal visual system of the pigeon. Journal of Comparative Neurology 429:94112. [OG]Google Scholar
Hermer-Vazquez, R., Hermer-Vazquez, L. & Chapin, J. K. (in press) Olfactomotor coupling during skilled reaching in rats. Proceedings of the National Academy of Sciences USA. [H-V]Google Scholar
Herrick, T. M., Cooper, J. A. (2002) A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129:787–96. [aFA]Google Scholar
Hetzel, W. (1974) Die Ontogenese des Telencephalons bei Lacerta sicula (Rafinesque) mit besonderer Berücksichtigung der pallialen Entwicklung. Zoologische Beiträge, Neue Folge 20:361458. [RGN]Google Scholar
Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. R. (2002) Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Emx1 mutant mice: Evidence that cortical and thalamic axons interact and guide each other. Journal of Comparative Neurology 447:817. [LM]Google Scholar
Hevner, R. F., Shi, L., Justice, N., Hsueh, Y. P., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M. Campagnoni, A. T. & Rubenstein, J. L. R. (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–66. [aFA]Google Scholar
Hicks, T. P., Stark, C. A. & Fletcher, W. A. (1986) Origins of afferents to visual suprageniculate nucleus of the cat. The Journal of Comparative Neurology 246:544–54. [OG]Google Scholar
Hoffmann, K. P. (1973) Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive field properties. Journal of Neurophysiology 36:409–24. [OG]Google Scholar
Hohmann, C. F. & Berger-Sweeney, J. (1998) Cholinergic regulation of cortical development and plasticity. New twists to an old story. Perspectives in Developmental Neurobiology, 5(4):401–25. [H-V]Google Scholar
Holland, L. Z. & Holland, N. D. (2001) Evolution of neural crest and placodes: Amphioxus as a model for the ancestral vertebrate? Journal of Anatomy 199(Pt. 1–2):8598. [H-V]Google Scholar
Hoogland, P. V. (1981) Spinothalamic projections in a lizard, Varanus exanthematicus: An HRP study. The Journal of Comparative Neurology 198:712. [FM-G]Google Scholar
Hoogland, P. V. & Vermeulen-Vanderzee, E. (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 285:289303. [FM-G]Google Scholar
Hopson, J. A. (1979) Paleoneurology. In: Biology of the reptilia, vol. 4, ed. Gans, C. C., Northcutt, R. G. & Ulinski, P. S. Academic Press.Google Scholar
Hunt, M. E., Kesner, R. P. & Evans, R. B. (1994) Memory for spatial location: Functional dissociation of entorhinal cortex and hippocampus. Psychobiology 22:186–94. [ASP]Google Scholar
Husband, S. A. & Shimizu, T. (1999) Efferent projections of the ectostriatum in the pigeon (Columba livia). The Journal of Comparative Neurology 406:329– 45. [OG]Google Scholar
Insausti, R. (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3:1926. [aFA]Google Scholar
Ivazov, N. I. & Belekhova, M. G. (1982) Electrophysiological studies on afferent organization of the thalamus in the lizard Ophisaurus apodus. (Russian) Journal of Evolutionary Biochemistry and Physiology 18:7686. [FM-G]Google Scholar
Jassik-Gerschenfeld, D., Minos, F. & Cond-Courtine, F. (1970) Receptive field properties of directionally selective units in the pigeon's optic tectum. Brain Research 24:407–21. [OG]Google Scholar
Jay, T. M. & Witter, M. P. (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 313: 574–86. [MB]Google Scholar
Jerison, H. J. (1973) Evolution of the brain and intelligence. Academic Press. [arFA]Google Scholar
Jerison, H. J. (1990) Fossil evidence on the evolution of the neocortex. In: Cerebral cortex, vol. 8A, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Johnson, D. M., Illig, K. R., Behan, M. & Haberly, L. B. (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. Journal of Neuroscience 20:6974–82. [H-V]Google Scholar
Johnston, J. B. (1916) Evidence of a motor pallium in the forebrain of reptiles. The Journal of Comparative Neurology 22:475–79. [FM-G]Google Scholar
Kaas, J. H. (1980) A comparative survey of visual cortex organization in mammals. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum Press. [FM-G]Google Scholar
Kaas, J. H. (1982) The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? Contributions to Sensory Physiology 7:201–40. [ABB]Google Scholar
Kaas, J. H. (1995) The evolution of isocortex. Brain, Behaviour and Evolution 46:187–96. [ABB]Google Scholar
Kaas, J. H. & Collins, C. E. (2001) Variability in the sizes of brain parts. Behavioral and Brain Sciences 24:288–90. [EG]Google Scholar
Källén, B. (1951) On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci. Journal of Comparative of Neurology 95:307–47. [aFA, RGN]Google Scholar
Karten, H. J. (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research 11:134–53. [arFA]Google Scholar
Karten, H. J. (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Annals of the New York Academy of Science 167:164–79. [arFA, ABB, TS]Google Scholar
Karten, H. J. (1991) Homology and the evolutionary origins of the “neocortex.” Brain, Behavior and Evolution 38:264–72. [DAF, AR, CS, TS]Google Scholar
Karten, H. J. (1997) Evolutionary developmental biology meets the brain: The origins of mammalian neocortex. Proceedings of the National Academy of Sciences (USA) 94:2800–04. [aFA]Google Scholar
Karten, H. J., Hodos, W., Nauta, W. J. H. & Revzin, A. M. (1973) Neural connections of the “Visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). The Journal of Comparative Neurology 150:253–78. [FM-G]Google Scholar
Katoh, Y. Y., Arai, R. & Benedek, G. (2000) Bifurcating projections from the cerebellar fastigial neurons to the thalamic suprageniculate nucleus and to the superior colliculus. Brain Research 864:308–11. [OG]Google Scholar
Katoh, Y. Y. & Benedek, G. (1995) Organization of the colliculo-suprageniculate pathway in the cat: A wheat germ agglutinin-horseradish peroxidase study. The Journal of Comparative Neurology 352:381–97. [OG]Google Scholar
Kayser, A. S. & Miller, K. D. (2002) Opponent inhibition: A developmental model of layer 4 of the neocortical circuit. Neuron 33:131–42. [AT]Google Scholar
Kemp, T. S. (1982) Mammal-like reptiles and the origin of mammals. Academic Press.Google Scholar
Kenigfest, N., Martinez-Marcos, A., Belekhova, M., Font, C., Lanuza, E., Desfilis, E. & Martinez-Garcia, F. (1997) A lacertilian dorsal retinorecipient thalamus: A re-investigation in the old-world lizard Podarcis hispanica. Brain, Behavior and Evolution 50:313–34. [FM-G]Google Scholar
Kielan-Jaworowska, Z. (1986) Brain evolution in Mesozoic mammals. Contributions to Geology, University of Wyoming [Special Paper] 3:2134. [EG]Google Scholar
Kielan-Jaworowska, Z. (1997) Characters of multituberculates neglected in phylogenetic analyses of early mammals. Lethaia 29:249–66. [EG]Google Scholar
Kilgard, M. P. & Merzenich, M. M. (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–18. [H-V]Google Scholar
Kim, A. S., Lowenstein, D. H. & Pleasure, S. J. (2001) Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mechanisms of Development 103:167–72. [aFA]Google Scholar
Kim, H. M., Qu, T., Kriho, V., Lacor, P., Smalheiser, N., Pappas, G. D., Guidotti, A., Costa, E., Sugaya, K. (2002) Reelin function in neural stem cell biology. Proceedings of the National Academy of Sciences (USA) 99:4020–25. [aFA]Google Scholar
King, V., Corwin, J. V. & Reep, R. L. (1989) Production and characterization of neglect in rats with unilateral lesions of ventrolateral orbital cortex. Experimental Neurology 105:287–99. [MB]Google Scholar
Kirsche, W. (1972) Die Entwicklung des Telencephalon der Reptilien und deren Beziehung zur Hirn-Bauplanlehre. Nova Acta Leopoldina 36:178. [RGN]Google Scholar
Korzeniewska, E., Brinkhus, H. B. & Zimmermann, M. (1986) Activities of single neurons in midbrain and thalamus of cats during conditioned nocifensive behavior. Pain 26:313–27. [OG]Google Scholar
Kostovic, I. & Rakic, P. (1990) Developmental history of the transitional subplate zone in visual and somatosensory cortex of macaque monkey and human brain. Journal of Comparative Neurology 297:441–70. [aFA]Google Scholar
Krubitzer, L. A. (1995) The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience 18:408–17. [FM-G, HS]Google Scholar
Krubitzer, L. A. (2000) How does evolution build a complex brain? Novartis Foundation Symposium 228:206–20. [ABB]Google Scholar
Künzle, H. & Radke-Schuller, S. (2001) Cortical connections of the claustrum and subjacent cell groups in the hedgehog tenrec. Anatomy and Embryology 203:403–15. [aFA]Google Scholar
Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L. H. (2000) Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current Biology 10:363–72. [aFA]Google Scholar
Kwon, Y. T. & Tsai, L. H. (1998) A novel disruption of cortical development in p35(–/–) mice distinct from reeler. Journal of Comparative Neurology 395:510–22. [aFA]Google Scholar
Lacalli, T. C. (2001) New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. Philosophy Transactions of the Royal Society of London B, Biological Science 356:1565–72. [H-V]Google Scholar
Lanuza, E., Belekhova, M., Martínez-Marcos, A., Font, C. & Martínez-García, F. (1998) Identification of the reptilian basolateral amygdala: An anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard Podarcis hispanica. European Journal of Neuroscience 10:3517–34. [aFA]Google Scholar
Lanuza, E., Martínez-Marcos, A. & Martínez-García, F. (1999) What is the amygdala? A comparative approach. Trends in Neuroscience 22:207. [arFA]Google Scholar
Lauder, G. (1994) Homology: Form and function. In: Homology: The hierarchical basis of comparative biology, ed. Hall, B. K. Academic Press. [RGN]Google Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V., Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience 19:7881–88. [aFA]Google Scholar
Laverghetta, A. V. & Shimizu, T. (2003) Organization of the ectostriatum based on afferent connections in the zebra finch (Taeniopygia guttata). Brain Research 963:101–12. [OG]Google Scholar
Lestienne, R., Herve-Minvielle, A., Robinson, D., Briois, L. & Sara, S. J. (1997) Slow oscillations as a probe of the dynamics of the locus coeruleus-frontal cortex interaction in anesthetized rats. Journal of Physiology Paris 91:273–84. [H-V]Google Scholar
Linster, C. & Hasselmo, M. E. (2001) Neuromodulation and the functional dynamics of piriform cortex. Chemical Senses 26:585–94. [H-V]Google Scholar
Lohman, A. H. M. & Van Woerden-Verkley, I. (1978) Ascending connections to the forebrain in the tegu lizard. The Journal of Comparative Neurology 182:555–94. [FM-G]Google Scholar
Luksch, H., Cox, K. & Karten, H. J. (1998) Bottlebrush dendritic endings and large dendritic fields: Motion detecting neurons in the tectofugal pathway. Journal of Comparative Neurology 396:399414. [OG, AR]Google Scholar
Luo, Z.-X., Crompton, A. W. & Sun, A. L. (2001) A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292:1535–40. [aFA, DAF]Google Scholar
Luo, Z.-X., Kielan-Jaworowska, Z. & Cifelli, R. L. (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47:178. [EG]Google Scholar
Lynch, G. (1986) Synapses, circuits, and the beginnings of memory. MIT Press. [arFA]Google Scholar
Macphail, E. M. (2001) Conservation in the neurology and psychology of cognition in vertebrates. In: Brain Evolution and Cognition, ed. Roth, G. & Wulliman, M. F. Wiley. [CS]Google Scholar
Magdaleno, S., Keshvara, L. & Curran, T. (2002) Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33:573–86. [aFA]Google Scholar
Major, D. E., Luksch, H. & Karten, H. J. (2000) Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the mammalian tectum. Journal of Comparative Neurology 423:243–60. [aFA, OG, AR]Google Scholar
Malatesta, P., Hack, M. A., Hartfuss, E., Kattenmann, H., Klinkert, W., Kirchhoff, F. & Götz, M. (2003) Neuronal or glial progeny: Regional differences in radial glia fate. Neuron 37:751–64. [DAF]Google Scholar
Mallamaci, A., Iannone, R., Briata, P., Pintonello, L., Mercurio, S., Boncinelli, E. & Corte, G. (1998) EMX2 protein in the developing mouse brain and olfactory area. Mechanisms of Development 77:165–72. [aFA]Google Scholar
Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. (2000) Area identity shifts in the early cerebral cortex of Emx 2-/- mutant mice. Nature Neuroscience 3:679–86. [aFA]Google Scholar
Manger, P. R., Elston, G. N. & Pettigrew, J. D. (2002) Multiple maps and activitydependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba). European Journal of Neuroscience 16:743–50. [CS]Google Scholar
Mannen, H. &. Li, S. S. L. (1999) Molecular evidence for a clade of turtles. Molecular Phylogenetics and Evolution 13:144–48. [aFA]Google Scholar
Manns, I. D., Alonso, A. & Jones, B. E. (2003) Rhythmically discharging Basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. Journal of Neurophysiology 89:1057–66. [H-V]Google Scholar
Maren, S. (1999) Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends in Neurosciences 22:561–66. [aFA]Google Scholar
Margrie, T. W., Rostas, J. A. P. & Sah, P. (2000) Inhibition of transmitter release and long-term depression in the avian hippocampus. Neuroscience Letters 284:1720. [CS]Google Scholar
Marín, O. & Rubenstein, J. L. (2001) A long, remarkable journey: Tangential migration in the telencephalon. Nature Reviews Neuroscience. 2:780–90. [aFA]Google Scholar
Marín, O., Smeets, W. J. A. J. & González, A. (1998) Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neurosciences 21:487–94. [aFA]Google Scholar
Marín-Padilla, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Zeitschrift für Anatomie und Entwicklungsgeschichte 134:117–45. [MM-P]Google Scholar
Marín-Padilla, M. (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study: II. Developmental differences and their significance. Zeitschrift für Anatomie und Entwicklungsgeschichte 136:125–42. [MM-P]Google Scholar
Marín-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anatomy and Embryology 152:109–26. [aFA, MM-P]Google Scholar
Marín-Padilla, M. (1990) Three-dimensional structural organization of layer I of the human cerebral cortex. A Golgi study. Journal of Comparative Neurology 229:89105. [MM-P]Google Scholar
Marín-Padilla, M. (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. Journal of Comparative Neurology 321:223–40. [MM-P]Google Scholar
Marín-Padilla, M. (1998) Cajal-Retzius cell and the development of the neocortex. Trends in Neurociences 21:6471. [MM-P]Google Scholar
Marín-Padilla, M. & Marín-Padilla, T. M. (1982) Origin, prenatal development and structural organization of layer I of the human motor cortex. A Golgi study. Anatomy and Embryology 164:161206. [MM-P]Google Scholar
Martínez-de-la-Torre, M., Garda, A.-L., Puelles, E. & Puelles, L. (2002) Gbx2 expression in the late embryonic chick dorsal thalamus. Brain Research Bulletin 57:435–38. [ABB]Google Scholar
Martinez-Garcia, F., Amiguet, M., Olucha, F. & Lopez-Garcia, C. (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neuroscience Letter 63:3944. [H-V]Google Scholar
Martinez-Garcia, F. & Lorente, M. J. (1990) Thalamo-cortical projections in the lizard Podarcis hispanica. In: The forebrain in nonmammals. New aspects of structure and development, ed. Schwerdtfeger, W. K. & Germroth, P. Springer-Verlag. [FM-G]Google Scholar
Martinez-Marcos, A., Lanuza, E., Font, C. & Martinez-Garcia, F. (1999) Afferents to the red nucleus in the lizard Podarcis hispanica: Putative pathways for visuomotor integration. The Journal of Comparative Neurology 411:3555. [FM-G]Google Scholar
McDonald, A. J. (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:144. [aFA]Google Scholar
Medina, L. & Reiner, A. (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain, Behavior and Evolution 46:235–58. [aFA]Google Scholar
Medina, L. & Reiner, A. (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neurosciences 23:112. [aFA, FM-G, CS]Google Scholar
Mehta, M. R., Lee, A. K. & Wilson, M. A. (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–46. [H-V]Google Scholar
Merabet, L., Desautels, A., Minville, K. & Casanova, C. (1998) Motion integration in a thalamic visual nucleus, Nature 396:265–68. [OG]Google Scholar
Michael, C. R. (1972) Functional organization of cells in superior colliculus of the ground squirrel. Journal of Neurophysiology 35:833–46. [OG]Google Scholar
Mickle, W. A. & Ades, H. W. (1954) Rostral projection pathway of the vestibular system. American Journal of Physiology 176:243–46. [OG]Google Scholar
Miltner, W. H., Braun, C., Arnold, M., Witte, H. & Taub, E. (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–36. [H-V]Google Scholar
Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. R. (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906909. [LM]Google Scholar
Moens, C. B., Cordes, S. P., Giorgianni, M. W., Barsh, G. S. & Kimmel, C. B. (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125:381–91. [aFA]Google Scholar
Molnár, Z. & Blakemore, C. (1995) How do thalamic axons find their way to the cortex? Trends in Neurosciences 18:389–97. [aFA, FM-G]Google Scholar
Molnár, Z. & Butler, A. B. (2002a) Neuronal changes during forebrain evolution in amniotes: An evolutionary developmental perspective. In: Progress in brain research, vol. 136, ed. Azmitia, E. C., DeFelipe, J., Jones, E. G., Rakic, P. & Ribak, C. E. Elsevier. [ABB]Google Scholar
Molnár, Z. & Butler, A. B. (2002b) The corticostriatal junction: A crucial region for forebrain development and evolution. BioEssays 24:530–41. [ABB]Google Scholar
Molnár, Z., Higashi, S. & López-Bendito, G. (2003) Choreography of early thalamocortical development. Cerebral Cortex 13:661–69. [rFA]Google Scholar
Montagnini, A. & Treves, A. (2003) The evolution of the mammalian cortex: From lamination to arealization. Brain Research Bulletin 60:387–93. [AT]Google Scholar
Montero, V. (1993) Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat. Experimental Brain Research 94:115. [aFA]Google Scholar
Monuki, E. S. & Walsh, C. A. (2001) Mechanisms of cerebral cortical patterning in mice and humans. Nature Neuroscience 4:1199–206. [aFA]Google Scholar
Mooney, R. D., Klein, B. G. & Rhoades, R. W. (1985) Correlations between the structural and functional characteristics of neurons in the superficial laminae and the hamster's superior colliculus. Journal of Neuroscience 5:29893009. [OG]Google Scholar
Moran, A., Wojcik, L., Cangiane, L. & Powers, A. S. (1998) Dorsal cortex lesions impair habituation in turtles (Chrysemys picta). Brain, Behavior and Evolution 51:4047. [ASP]Google Scholar
Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O’Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83. [MC]Google Scholar
Morriss-Kay, G. M. (2001) Derivation of the mammalian skull vault. Journal of Anatomy 199:143–51. [GO]Google Scholar
Moss, M. L. (1960) Inhibition and stimulation of sutural fusion in the rat calvaria. Anatomical Record 136:457–67. [GO]Google Scholar
Muñoz, M. D., Gaztelu, J. M. & García-Austt, E. (1998) Homo- and heterosynaptic long-term potentiation in the medial cortex of the turtle brain in vitro. Brain Research 807:155–59. [CS]Google Scholar
Murray, E. A. & Richmond, B. J. (2001) Role of perirhinal cortex in object perception, memory, and associations. Current Opinions in Neurobiology 11:188–93. [H-V]Google Scholar
Muzio, L., DiBenedetto, B., Stoykova, A., Boncinelli, E., Gruss, P. & Mallamaci, A. (2002a) Conversion of cerebral cortex into basal ganglia in Emx2(–/–) Pax6(Sey/Sey) double-mutant mice. Nature Neuroscience. 5:737–45. [aFA, ABB, LM]Google Scholar
Muzio, L., DiBenedetto, B., Stoykova, A., Boncinelli, E., Gruss, P. & Mallamaci, A. (2002b) Emx2 and Emx1 control regionalization of the pre-neuronogenic cortical primordium. Cerebral Cortex 12:129–39. [LM]Google Scholar
Myojin, M., Ueki, T., Sugahara, F., Murakami, Y., Shigetani, Y., Aizawa, S., Hirano, S. & Kuratani, S. (2001) Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: Conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. Journal of Experimental Zoology 291:6484. [aFA]Google Scholar
Nacher, J., Ramírez, C., Molowny, A. & López-García, C. (1996) Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. Journal of Comparative Neurology 374:118–35. [arFA]Google Scholar
Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. & Pearlman, A. L. (2001) Two modes of radial migration in early development of the cerebral cortex. Nature Neuroscience 4:143–50. [aFA]Google Scholar
Nadarajah, B. & Parnavelas, J. G. (2002) Modes of neuronal migration in the developing cerebral cortex. Nature Reviews Neuroscience 3:423–32. [aFA]Google Scholar
Nauta, W. J. H. & Gygax, P. A. (1951) Silver impregnation of degenerating axon terminals in the central nervous system. Stain Technology 26:511. [aFA]Google Scholar
Nauta, W. J. H. & Gygax, P. A. (1954) Silver impregnation of degenerating axon terminals in the central nervous system: A modified technique. Stain Technology 29:9193. [aFA]Google Scholar
Nauta, W. H. J. & Karten, H. J. (1970) A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: The Neurosciences, Second Study Program, ed. Schmitt, F. O. Rockefeller University Press. [aFA]Google Scholar
Neary, T. J. (1990) The pallium of anuran amphibians. In: Cerebral cortex, vol. 8B, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Neary, T. J. & Wilczynski, W. (1977) Ascending thalamic projections from the obex region in ranid frogs. Brain Research 138:529–33. [FM-G]Google Scholar
Nery, S., Fishell, G. & Corbin, J. G. (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience 15:12791287.Google Scholar
Northcutt, R. G. (1969) Discussion of the preceding paper. Annals of the New York Academy of Sciences 167:180–85. [aFA]Google Scholar
Northcutt, R. G. (1970) The telencephalon of the western painted turtle (Chrysemys picta belli). Illinois Biological Monograph. University of Illinois Press. [RGN]Google Scholar
Northcutt, R. G. (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience 4:301–50. [aFA]Google Scholar
Northcutt, R. G. (1984) Evolution of the vertebrate central nervous system: Patterns and processes. American Zoologist 24:701–16. [RGN]Google Scholar
Northcutt, R. G. (1990) Ontogeny and phylogeny: A re-evaluation of conceptual relationships and some applications. Brain, Behavior and Evolution 36:116–40. [RGN]Google Scholar
Northcutt, R. G. (1995) The forebrain of gnathostomes: In search of a morphotype. Brain, Behavior and Evolution 46:275318. [CS]Google Scholar
Northcutt, R. G. (1996a) The Agnathan ark: The origin of craniate brains. Brain, Behavior and Evolution 48:237–47. [aFA]Google Scholar
Northcutt, R. G. (1996b) The origin of craniates: Neural crest, neurogenic placodes, and homeobox genes. Israel Journal of Zoology (supplement) 42:273313. [aFA]Google Scholar
Northcutt, R. G. (1999) Field homology: A meaningless concept. European Journal of Morphology 37: 9599. [arFA, RGN]Google Scholar
Northcutt, R. G. (2002) Understanding vertebrate brain evolution. Integrative and Comparative Biology 42:743–56. [RGN]Google Scholar
Northcutt, R. G. & Kaas, J. H. (1995) The emergence and evolution of mammalian neocortex. Trends in Neurosciences 18:373–79. [aFA, DAF, AR, HS]Google Scholar
Northcutt, R. G. & Kicliter, E. (1980) Organization of the amphibian telencephalon. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum Press. [AR]Google Scholar
Northcutt, R. G. & Puzdrowski, R. L. (1988) Projections of the olfactory bulb and nervus terminalis in the silver lamprey. Brain, Behavior and Evolution 32:96107. [aFA]Google Scholar
Northcutt, R. G. & Ronan, M. (1992) Afferent and efferent connections of the bullfrog medial pallium. Brain, Behaviour and Evolution 40:116. [FM-G]Google Scholar
Nothias, F., Fishell, G. & Altaba, A. (1998) Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Current Biology 8:459–62. [FM-G]Google Scholar
Ohkubo, Y., Chiang, C. & Rubenstein, J. L. R. (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111:117. [FM-G]Google Scholar
Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, , Pant, H. C., Brady, R. O., Martin, L. J. & Kulkarni, A. B. (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proceedings of the National Academy of Sciences (USA) 93:11173–78. [aFA]Google Scholar
O’Keefe, J. A. (1999) Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9:352–64. [aFA]Google Scholar
O’Keefe, J. & Dostrowsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34:171–75. [aFA]Google Scholar
O’Keefe, J. A. & Nadel, L. (1978) The hippocampus as a cognitive map. Oxford University Press. [aFA]Google Scholar
Olton, D. S., Becker, J. T. & Handelmann, G. E. (1979) Hippocampus, space, and memory. Behavioral and Brain Sciences 2:313–65. [MC]Google Scholar
Opperman, L. A., Passarelli, R. W., Morgan, E. P., Reintjes, M. & Ogle, R. C. (1995) Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. Journal of Bone and Mineral Research 10:1978–87. [GO]Google Scholar
Opperman, L. A., Sweeney, T. M., Redmon, J., Persing, J. A. & Ogle, R. C. (1993) Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Developmental Dynamics 198:312–22. [GO]Google Scholar
Osumi, N. (2001) The role of Pax6 in brain patterning. Tohoku. Journal of Experimental Medicine 193:163–74. [aFA]Google Scholar
Pallas, S. L. (2001) Intrinsic and extrinsic factors that shape neocortical specification. Trends in Neurosciences 24:417–23. [aFA]Google Scholar
Pannese, M., Lupo, G., Kablar, B., Boncinelli, E., Barsacchi, G. & Vignali, R. (1998) The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals. Mechanisms of Development 73:7383. [aFA]Google Scholar
Parent, A. & Olivier, A. (1970) Comparative histochemical study of the corpus striatum. Journal Für Hirnforschung 12:7381. [aFA]Google Scholar
Parnavelas, J. G. (2000) The origin and migration of cortical neurones: New vistas. Trends in Neurosciences 23:126–31. [aFA]Google Scholar
Pearce, J. M., Robert, A. D. L. & Good, M. (1998) Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature 396:7577. [MC]Google Scholar
Peterson, E. (1980) Behavioral studies of telencephalic functions in reptiles. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E. Plenum. [ASP]Google Scholar
Petrillo, M., Ritter, C. A. & Powers, A. S. (1994) A role for acetylcholine in spatial memory in turtles. Physiology and Behavior 56:135–41. [ASP]Google Scholar
Pettigrew, J. D. (1979) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193:675–78. [CS]Google Scholar
Pinto-Lord, M. C., Evrard, P. & Caviness, V. S. (1982) Obstructed neuronal migration along radial glial fibers and young neurons migrating to the neocortex of the reeler mouse: A Golgi-EM analysis. Brain Research 256:379–93. [aFA]Google Scholar
Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T. & Ghosh, A. (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147–60. [rFA]Google Scholar
Poschel, B., Draguhn, A. & Heinemann, U. (2002) Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Research 938:2228. [H-V]Google Scholar
Powers, A. S. (1990) Brain mechanisms of learning in reptiles. In: Neurobiology of comparative cognition, ed. Kesner, R. P. & Olton, D. S. Erlbaum. [ASP, CS]Google Scholar
Pretchl, J. C. (1994) Visual motion induces synchronous oscillations in turtle visual cortex. Proceedings of the National Academy of Sciences USA 91:12467–71. [CS]Google Scholar
Pretchl, J. C. & Bullock, T. H. (1994) Event-related potentials to omitted visual stimuli in a reptile. Electroencephalography and Clinical Neurophysiology 91:5466. [CS]Google Scholar
Puelles, L. (2001a) Brain segmentation and forebrain development in amniotes. Brain Research Bulletin 55:695710. [LM]Google Scholar
Puelles, L. (2001b) Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philosophical Transactions of the Royal Society of London B Biological Sciences 356:1583–98. [rFA]Google Scholar
Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S. & Rubenstein, J. L. R. (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. Journal of Comparative Neurology 424:409–38. [arFA, ABB, DAF, LM, AR, TS]Google Scholar
Puelles, L., Kuwana, E., Puelles, E. & Rubenstein, J. L. R. (1999) Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. European Journal of Morphology 37:139–50. [aFA]Google Scholar
Puelles, L. & Medina, L. (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Research Bulletin 57:243–55. [rFA, LM, RGN, CS]Google Scholar
Puelles, L. & Rubenstein, J. L. R. (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests neuromeric organization. Trends in Neuroscience 16:472–79. [aFA]Google Scholar
Quiroga, J. (1980) The brain of the mammal-like reptile Probainognathus jenseni (Therapsida, Cynodontia), A correlative paleo-neurological approach to the neocortex at the reptile-mammal transition. Journal furHirnforschung 21:299336. [aFA]Google Scholar
Radke-Schuller, S. & Künzle, H. (2000) Olfactory bulb and retrobulbar regions in the hedgehog tenrec: Organization and interconnections. Journal of Comparative Neurology 423: 687795. [MB]Google Scholar
Ragsdale, C. W. & Grove, E. A. (2001) Patterning the mammalian cerebral cortex. Current Opinion in Neurobiology 11:5058. [LM]Google Scholar
Rakic, P. (1974) Neurons in rhesus monkey: Systematic relation between time of origin and eventual disposition. Science 183:425–27. [aFA]Google Scholar
Rakic, P. (1988) Specification of cerebral cortical areas. Science 241:170–76. [aFA]Google Scholar
Rakic, P. (1995) A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neuroscience 18:383–88. [aFA, HS]Google Scholar
Ramón y Cajal, S. (1995) Histology of the nervous system. Oxford University Press. [aFA]Google Scholar
Ramus, S. J. & Eichenbaum, H. (2000) Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. Journal of Neuroscience 20:81998208. [aFA, MB]Google Scholar
Redies, C., Ast, M., Nakagawa, S., Takeichi, M., Martínez-de-la-Torre, M. & Puelles, L. (2000) Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. Journal of Comparative Neurology 421:481514. [aFA, OG, AR]Google Scholar
Redies, C., Medina, L. & Puelles, L. (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. Journal of Comparative Neurology 438:253–85. [ABB]Google Scholar
Reep, R. L. (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain, Behaviour and Evolution 56:212–34. [aFA]Google Scholar
Reilly, S. & Good, M. (1989) Hippocampal lesions and associative learning in the pigeon. Behavioral Neuroscience 103:731–42. [MC]Google Scholar
Reiner, A. (1991) A comparison of neurotransmitter-specific and neuropeptidespecific neuronal cell types present in the dorsal cortex of reptiles with those present in the isocortex of mammals. Brain, Behaviour and Evolution 38:5391. [aFA]Google Scholar
Reiner, A. (1993) Neurotransmitter organization and connections of turtle cortex:implications for the evolution of mammalian isocortex. Comparative Biochemistry and Physiology 104A:735–48. [arFA, ABB, AR, TS]Google Scholar
Reiner, A. (1994) Laminar distribution of the cells of origin of the ascending and descending tectofugal pathways in turtles: Implications for the evolution of tectal lamination. Brain, Behaviour and Evolution 43:254–92. [AR]Google Scholar
Reiner, A. (1996) Levels of organization and the evolution of isocortex: Homology, nonhomology or parallel homoplasy. Trends in Neurosciences 19:8991. [AR]Google Scholar
Reiner, A. (2000) A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. In: Evolutionary developmental biology of the cerebral cortex, ed. Bock, G. A. & Cardew, G. Novartis. [Novartis Foundation Symposium 228:83–108.] [aFA, ABB, OG, AR]Google Scholar
Reiner, A. & Northcutt, R. G. (2000) Succinic dehydrogenase histochemistry reveals the location of the putative primary visual and auditory areas within the dorsal ventricular ridge of Sphenodon punctatus. Brain, Behavior and Evolution 55:2636. [aFA]Google Scholar
Reiner, A. & Powers, A. S. (1978) Intensity and pattern discrimination in turtles following lesions of nucleus rotundus. Journal of Comparative and Physiological Psychology 92:1156–68. [ASP]Google Scholar
Reiner, A. & Powers, A. S. (1983) The effects of lesions of telencephalic structures on the visual discriminative performance of turtles (Chrysemys picta). Journal of Comparative Neurology 218:124. [ASP]Google Scholar
Rice, D. S. & Curran, T. (1999) Mutant mice with scrambled brains: Understanding the signalling pathways that control cell positioning in the CNS. Genes and Development 13:2758–73. [CS]Google Scholar
Richmond, J. & Colombo, M. (2002) Hippocampal lesions, contextual retrieval, and autoshaping in pigeons. Brain Research 928:6068. [MC]Google Scholar
Rieppel, O. & Reisz, R. R. (1999) The origin and early evolution of turtles. Annual Review of Ecology and Systematics 30:122. [aFA]Google Scholar
Rockel, A. J., Hiorns, R. W. & Powell, T. P. (1980) The basic uniformity in structure of the neocortex. Brain 103:221–44. [HS]Google Scholar
Rodríguez, F., López, J. C., Vargas, J. P., Broglio, C., Gómez, Y. & Salas, C. (2002a) Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish. Brain Research Bulletin 57:499503. [aFA, ASP, CS]Google Scholar
Rodríguez, F., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C. & Salas, C. (2002b) Conservation of spatial memory function in the pallial forebrain of amniotes and ray finned fishes. Journal of Neuroscience 22:2894–903. [ASP, CS]Google Scholar
Rolls, E. T. (2000) The orbitofrontal cortex and reward. Cerebral Cortex 10:284–94. [MB]Google Scholar
Rosa, M. G. P. & Krubitzer, L. A. (1999) The evolution of visual cortex: Where is V2? Trends in Neuroscience 22:242–48. [aFA]Google Scholar
Rosene, D. L. & Van Hoesen, G. W. (1987) The hippocampal formation of the primate brain. In: Cerebral cortex, vol. 6, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Rosin, J. F., Datiche, F. & Cattarelli, M. (1999) Modulation of the piriform cortex activity by the basal forebrain: An optical recording study in the rat. Brain Research 820:105–11. [H-V]Google Scholar
Rowe, T. (1996a) Brain heterochrony and origin of the mammalian middle ear. Memoirs of the California Academy of Sciences 20:7195. [aFA]Google Scholar
Rowe, T. (1996b) Coevolution of the mammalian middle ear and neocortex. Science 273:651–54. [aFA, EG]Google Scholar
Rubaschkin, W. (1903) Zur morphologie des Gehirns der Amphibien. Archiv für mikroskopische Anatomie. 63:207323. [FM-G]Google Scholar
Rubenstein, J. L. R. (2000) Intrinsic and extrinsic control of cortical development. In: Evolutionary developmental biology of the cerebral cortex, ed. Bock, G. R. & Cardew, G. Novartis Foundation Symposium. Wiley. [LM]Google Scholar
Ruiz i Atalba, A., Palma, V. & Dahmane, N. (2002) Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience 3:2433. [rFA]Google Scholar
Russel, E. S. (1916/1982) Form and function: A contribution to the history of animal morphology. University of Chicago Press. (Original work published 1916, reprinted 1982). [aFA]Google Scholar
Saban, R. (1995) Image of the human fossil brain: Endocranial casts and meningeal vessels in young and adult subjects. In: Origins of the human brain, ed. Changeux, J.-P. & Chavaillon, J. Oxford University Press. [GO]Google Scholar
Sagan, C. (1977) The dragons of Eden: Speculations on the evolution of human intelligence. Random House. [arFA]Google Scholar
Salas, C., Broglio, C. & Rodríguez, F. (2003) Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity. Brain, Behavior and Evolution 62:7282. [CS]Google Scholar
Sanides, F. (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: The primate brain: Advances in primatology, vol. 1, ed. Noback, C. R. & Montagna, W. Appleton-Century-Crofts. [ABB]Google Scholar
Satoh, G., Takeuchi, J. K., Yasui, K., Tagawa, K., Saiga, H., Zhang, P. & Satoh, N. (2002) Amphi-Eomes/Tbr1: An amphioxus cognate of vertebrate Eomesodermin and T-Brain1 genes whose expression reveals evolutionarily distinct domain in amphioxus development. Journal of Experimental Zoology 294:136–45. [H-V]Google Scholar
Save, E., Nerad, L. & Poucet, B. (2000) Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10:6476. [aFA]Google Scholar
Scalia, F. & Gregory, K. (1970) Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain, Behavior and Evolution 3:1629. [FM-G]Google Scholar
Schmidt, A. & Bischof, H. J. (2001) Neurons with complex receptive fields in the stratum griseum centrale of the zebra finch (Taeniopygia guffata castanotis Gould) optic tectum. The Journal of Comparative Physiology A 187:913–24. [OG]Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience 1:155–59. [aFA]Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. Journal of Neuroscience 19:1876–84. [aFA]Google Scholar
Schoenbaum, G. & Eichenbaum, H. (1995) Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. Journal of Neurophysiology 74(2):733–50. [MB]Google Scholar
Schultz, W., Trembay, L. & Hollerman, J. R. (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10:272–83. [MB]Google Scholar
Senzaki, K., Ogawa, M. & Yagi, T. (1999) Proteins of the CNR family are multiple receptors for Reelin. Cell 99:635–47. [aFA]Google Scholar
Seo, H. C., Sætre, B. O., Håvik, B., Ellingse, S. & Fjose, A. (1998) The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mechanisms of Development 70:4963. [aFA]Google Scholar
Shapiro, E. & Wieraszko, A. (1996) Comparative in vitro studies of hippocampal tissue from homing and non-homing pigeon. Brain Research 725:199206. [CS]Google Scholar
Shimizu, T. (2001) Evolution of the forebrain in tetrapods. In: Brain evolution and cognition, ed. Roth, G. & Wulliman, M. F. Wiley/Spektrum. [TS]Google Scholar
Shimizu, T. & Karten, H. J. (1993) Multiple origins of neocortex: Contributions of the dorsal ventricular ridge. In: Vision, brain and behavior in birds, ed. Zeigler, H. P. & Bischof, J. H. MIT Press. [aFA]Google Scholar
Shipley, M. T. & Ennis, M. (1996) Functional organization of olfactory system. Journal of Neurobiology 30:123–76. [aFA]Google Scholar
Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S. & Ahissar, E. (2000) A neuronal analogue of state-dependent learning. Nature 403:549–53. [H-V]Google Scholar
Siegel, J. J., Nitz, D. & Bingman, V. P. (2000) Hippocampal theta rhythm in awake, freely moving homing pigeons. Hippocampus 10:627–31. [CS]Google Scholar
Siegel, J. J., Nitz, D. & Bingman, V. P. (2002) Electrophysiological profile of avian hippocampal unit activity: A basis for regional subdivisions. Journal of Comparative Neurology 445:256–68. [CS]Google Scholar
Simeone, A., Gulisano, M., Acampora, D., Stornaiuolo, A., Rambaldi, M. & Boncinelli, E. (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. European Molecular Biology Organization Journal 11:2541–50. [aFA]Google Scholar
Smeets, W. J. A. J. (1983) The secondary olfactory connections in two chondrichthians, the shark Scyliorhinus canicula and the ray Raja clavata. Journal of Comparative Neurology 10:334–44. [aFA]Google Scholar
Smeets, W. J. A. J., Marín, O. & González, A. (2000) Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy 196:501–17. [aFA]Google Scholar
Smith, D. W. & Tondury, G. (1978) Origin of the calvaria and its sutures. American Journal of Diseases of Children 132:662–66. [GO]Google Scholar
Smith Fernández, A., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: Implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–111. [arFA, ABB, DAF, AR]Google Scholar
Soares, J. G., Gattass, R., Souza, A. P., Rosa, M. G., Fiorani, M. Jr. & Brandao, B. L. (2001) Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Visual Neuroscience 18:2541. [OG]Google Scholar
Stenman, J., Yu, R. T., Evans, R. M. & Campbell, K. (2003) Tlx and Pax6 cooperate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130:1113–22. [rFA, ABB]Google Scholar
Stephan, H. (1983) Evolutionary trends in limbic structures. Neuroscience and Behavioral Physiology 7:367–74. [aFA]Google Scholar
Stephan, H. & Manolescu, J. (1980) Comparative investigations on hippocampus in insectivores and primates. Zeitschrift fur Mikroskopische und Anatomische Forschung 94:1025–50. [HS]Google Scholar
Steriade, M. (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex 7:583604. [H-V]Google Scholar
Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. Journal of Neuroscience 20:8042–50. [aFA]Google Scholar
Stoykova, A., Walther, C., Fritsch, R. & Gruss, P. (1996) Forebrain patterning defects in Pax6/Small eye mutant mice. Development 122:3453–65. [LM]Google Scholar
Striedter, G. F. (1997) The telencephalon of tetrapods in evolution. Brain, Behavior and Evolution 49:179213. [aFA, RGN, TS]Google Scholar
Striedter, G. F., Marchant, A. & Beydler, S. (1998) The “neostriatum” develops as part of the lateral pallium in birds. Journal of Neuroscience 18:5839–49. [aFA]Google Scholar
Striedter, G. F. & Northcutt, R. G. (1991) Biological hierarchies and the concept of homology. Brain, Behavior and Evolution 38:177–89. [aFA]Google Scholar
Sun, H. & Frost, B. J. (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neuroscience 1:296303. [OG]Google Scholar
Supèr, H., Martinez, A., Del Rio, J. A. & Soriano, E. (1998a) Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. Journal of Neuroscience 18:4616–26. [HS]Google Scholar
Supèr, H., Soriano, E. & Uylings, H. B. M. (1998b) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Research Reviews 27:4064. [arFA, HS]Google Scholar
Supèr, H. & Uylings, H. B. M. (2001) The early differentiation of the neocortex: A hypothesis on neocortical evolution. Cerebral Cortex 11:1101–09. [HS, AT]Google Scholar
Sussel, L., Marín, O., Kimura, S. & Rubenstein, J. L. (1999) Loss of Nkx 2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into striatum. Development 126:3359–70. [aFA]Google Scholar
Swanson, L. W. (2000) Cerebral hemisphere regulation for motivated behavior. Brain Research 886:113–64. [aFA]Google Scholar
Swanson, L. W. & Kohler, C. (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. Journal of Neuroscience 6:3010–23. [MB]Google Scholar
Swanson, L. W. & Petrovich, G. D. (1998) What is the amygdala? Trends in Neuroscience 21:323–31. [aFA]Google Scholar
Szucsik, J. C., Witte, D. P., Li, H., Pixley, S. K., Small, K. M. & Potter, S. S. (1997) Altered forebrain and hindbrain development in mice mutant for the Gsh2 homeobox gene. Developmental Biology 191:230–42. [aFA]Google Scholar
Tabata, H. & Nakajima, K. (2002) Neurons tend to stop migration and differentiate along the cortical internal plexiform layers in the reelin signal-deficient mice. Journal of Neuroscience Research 69:723–30. [aFA]Google Scholar
Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128:1983–93. [aFA, DAF]Google Scholar
Taschenberger, H., Leao, R. M., Rowland, K. C., Spirou, G. A. & von Gersdorff, H. (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36:1127–43. [H-V]Google Scholar
Ten Donkelaar, H. J. (1998a) Anurans. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Ten Donkelaar, H. J. (1998b) Reptiles. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Ten Donkelaar, H. J. (1998c) Urodeles. In: The central nervous system of vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Theil, T., Aydin, S., Koch, S., Grotewold, L. & Ruther, U. (2002) Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129:3045–54. [LM]Google Scholar
Theiss, M. P. H., Hellmann, B. & Güntürkün, O. (2003) The architecture of an inhibitory side path within the avian tectofugal system, NeuroReport 14:879–82. [OG]Google Scholar
Thierry, A. M., Gioanni, Y., Dégénétais, E. & Glowinski, J. (2000) Hippocampoprefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampus 10:411–19. [aFA]Google Scholar
Tissir, F., Lambert De Rouvroit, C., Sire, J. Y., Meyer, G. & Goffinet, A. M. (2003) Reelin expression during embryonic brain development in Crocodylus niloticus. Journal of Comparative Neurology 457:250–62. [rFA]Google Scholar
Tole, S., Goudreau, G., Assimacopoulos, S. & Grove, E. A. (2000) Emx2 is required for growth of the hippocampus but not hippocampal field specification. Journal of Neuroscience 20:2618–25. [LM]Google Scholar
Treves, A. (2003) Computational constraints that may have favoured the lamination of sensory cortex. Journal of Computational Neuroscience 14:271–82. [AT]Google Scholar
Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W. & Nimpf, J., Hammer, R. E., Richardson, J. A. & Herz, J. (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689701. [aFA]Google Scholar
Tsien, J. Z. (2000) Linking Hebb's coincidence-detection to memory formation. Current Opinions in Neurobiology 10:266–73. [H-V]Google Scholar
Tsodyks, M. (2002) Spike-timing-dependent synaptic plasticity – The long road towards understanding neuronal mechanisms of learning and memory. Trends in Neuroscience 25:599600. [H-V]Google Scholar
Ulinski, P. S. (1983) Dorsal ventricular ridge: A treatise on brain organization in reptiles and birds. Wiley. [aFA]Google Scholar
Ulinski, P. S. (1988) Functional architecture of turtle dorsal cortex. In: The forebrain of reptiles. Current concepts of structure and function, ed. Schwerdtfeger, W. K. & Smeets, W. J. A. J. Karger. [ASP]Google Scholar
Ulinski, P. S. (1990) The cerebral cortex of reptiles. In: Cerebral cortex, vol. 8A, ed. Jones, E. G. & Peters, A. Plenum Press. [aFA]Google Scholar
Van Hoesen, G. W. (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends in Neuroscience 10:345–50. [aFA]Google Scholar
Vanderwolf, C. H. (1992) Hippocampal activity, olfaction, and sniffing: An olfactory input to the dentate gyrus. Brain Research 593:197208. [H-V]Google Scholar
Vargas, J. P., Rodríguez, F., López, J. C., Arias, J. L. & Salas, C. (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Research 865:7784. [CS]Google Scholar
Veenman, C. L., Wild, J. M. & Reiner, A. (1995) Organization of the avian “corticostriatal” projection system: A retrograde and anterograde pathway tracing study in pigeons. Journal of Comparative Neurology 354:87126. [aFA]Google Scholar
Vesselkin, N. P., Agayan, A. L. & Nomokonova, L. M. (1971) A study of thalamo-telencephalic afferent systems in frogs. Brain, Behavior and Evolution 4:295306. [FM-G]Google Scholar
Voogd, J., Nieuwenhuys, R. & Van Dongen, P. A. M. (1998) Mammals. In: The Central Nervous System of Vertebrates, ed. Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. Springer-Verlag. [aFA]Google Scholar
Wagermans, P. A. H., van der Velde, J.-P. & Kuijpers-Jagtman, A. M. (1988) Sutures and forces: A review. American Journal of Orthodontics and Dentofacial Orthopedics 94:129–41. [GO]Google Scholar
Wang, Y., Hu, Y., Meng, J. & Chuankui, L. (2001) An ossified Meckel's cartilage in two cretaceous mammals and origin of the mammalian middle ear. Science 294:357–61. [aFA, EG]Google Scholar
Wang, Y., Jiang, S. & Frost, B. J. (1993) Visual processing in pigeon nucleus rotundus: Luminance, color, motion, and looming subdivisions. Visual Neuroscience 10:2130. [OG]Google Scholar
Weidenreich, F. (1941) The brain and its role in the phylogenetic transformation of the human skull. Transactions of the American Philosophical Society 31:321442. [GO]Google Scholar
Weller, R. E., Wall, J. T. & Kaas, J. H. (1984) Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. The Journal of Comparative Neurology 228:81104. [OG]Google Scholar
Wenk, H., Bigl, V. & Meyer, U. (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Research 2:295316. [H-V]Google Scholar
Whishaw, I., Cassel, J. & Jarrard, L. (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: A dissociation between getting there and knowing where. Journal of Neuroscience 15:5779–88. [MC]Google Scholar
Whittington, M. A., Traub, R. D. & Jefferys, J. G. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–15. [H-V]Google Scholar
Wicht, H. (1996) The brains of lampreys and hagfishes: Characteristics, characters, and comparisons. Brain, Behavior and Evolution 48:248–61. [aFA]Google Scholar
Wicht, H. & Himstedt, W. (1988) Topologic and connectional analysis of the dorsal thalamus of Triturus alpestris (Amphibia, Urodela, Salamandridae). The Journal of Comparative Neurology 267:545–61. [FM-G]Google Scholar
Wicht, H. & Northcutt, R. G. (1992) The forebrain of the pacific hagfish: A cladistic reconstruction of the ancestral craniate forebrain. Brain, Behavior and Evolution 40:2564. [aFA]Google Scholar
Wicht, H. & Northcutt, R. G. (1993) Secondary olfactory projections and pallial topography in the Pacific hagfish Eptatretus stouti. Journal of Comparative Neurology 337:529–42. [aFA]Google Scholar
Wiener, S. I., Paul, C. A. & Eichenbaum, H. (1989) Spatial and behavioral correlates of hippocampal neuronal activity. Journal of Neuroscience 9:2737–63. [aFA]Google Scholar
Wilczynski, W. (1978) Connections of the midbrain auditory center in the bullfrog, Rana catesbeiana. Ph.D. thesis, University of Michigan. [FM-G]Google Scholar
Wilczynski, W. & Capranica, R. R. (1984) The auditory system of anuran amphibians. Progress in Neurobiology 22:138. [FM-G]Google Scholar
Wilczynski, W. & Northcutt, R. G. (1983) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214:321–32. [aFA, DAF, FM-G]Google Scholar
Wild, J. M. (1992) Direct and indirect “cortico”-rubral and rubro-cerebellar cortical projections in the pigeon. The Journal of Comparative Neurology 326:623–36. [FM-G]Google Scholar
Wild, J. M. (1997) The avian somatosensory system: The pathway from wing to Wulst in a passerine (Chloris chloris). Brain Research. 759:122–34. [aFA]Google Scholar
Wild, J. M. & Williams, M. N. (2000) Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. The Journal of Comparative Neurology 416:429–50. [FM-G]Google Scholar
Wiley, E. O. (1981) Phylogenetics: Theory and practice of phylogenetic systematics. Wiley. [RGN]Google Scholar
Wilson, S. W. & Rubenstein, J. L. R. (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–51. [aFA, LM]Google Scholar
Woo, T. U., Beale, J. M. & Finlay, B. L. (1991) Dual fate of subplate neurons in a rodent. Cerebral Cortex 1:433–43. [aFA]Google Scholar
Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. (1999) The global record of memory in hippocampal neuronal activity. Nature 397:613–16. [aFA]Google Scholar
Wood, E. R., Dudchenko, P. A., Robitsek, J. R. & Eichenbaum, H. (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–33. [aFA]Google Scholar
Woolf, N. J., Eckenstein, F. & Butcher, L. L. (1984) Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Research Bulletin 13:751–84. [H-V]Google Scholar
Wu, C. C., Russell, R. M. & Karten, H. J. (2000) Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): Birthdating and pathway tracing study. The Journal of Comparative Neurology 417:115–32. [OG]Google Scholar
Yanes, C., Perez Batista, M. A., Martin Trujillo, J. M., Monzon, M. & Marrero, A. (1987) Anterior dorsal ventricular ridge in the lizard: Embryonic development. Journal of Morphology 194:5564. [RGN]Google Scholar
Yoon, M. S., Puelles, L. & Redies, C. (2000) Formation of cadherin-expressing brain nuclei in diencephalic and alar plate divisions. Journal of Comparative Neurology 421:461–80. [aFA]Google Scholar
Yun, K., Potter, S. & Rubenstein, J. L. R. (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193205. [aFA, LM]Google Scholar
Zardoya, R. & Meyer, A. (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193200. [aFA]Google Scholar
Zola-Morgan, S. & Squire, L. R. (1986) Memory impairment in monkeys following lesions limited to the hippocampus. Behavioral Neuroscience 100:155–60. [MC]Google Scholar
1
Cited by