Skip to main content Accessibility help
×
Home

REACHING A BEQUEST GOAL WITH LIFE INSURANCE: AMBIGUITY ABOUT THE RISKY ASSET'S DRIFT AND MORTALITY'S HAZARD RATE

  • Xiaoqing Liang (a1) and Virginia R. Young (a2)

Abstract

We determine the optimal robust strategy of an individual who seeks to maximize the (penalized) probability of reaching a bequest goal when she is uncertain about the drift of the risky asset and her hazard rate of mortality. We assume the individual can invest in a Black–Scholes market. We solve two optimization problems with ambiguity. The first is to maximize the penalized probability of reaching a bequest goal without life insurance in the market. In the second problem, in addition to investing in the financial market, the individual is allowed to purchase term life insurance to help her reach her bequest goal. As the individual becomes more ambiguity averse concerning the drift of the risky asset, she becomes more conservative with her investment strategy. Also, as she becomes more ambiguity averse about her hazard rate of mortality, numerical work indicates she is more likely to buy life insurance when the ambiguity towards the return of the risky asset is not too large.

Copyright

Corresponding author

Footnotes

Hide All
*

X. Liang thanks the National Natural Science Foundation of China (11701139, 11571189) and the Natural Science Foundation of Hebei Province (A2018202057) for the financial support of her research.

V. Young thanks the Cecil J. and Ethel M. Nesbitt Professorship for the partial financial support of her research.

Footnotes

References

Hide All
Anderson, E.W., Hansen, L.P. and Sargent, T.J. (2003) A quartet of semi-groups for model specification, robustness, prices of risk, and model detection. Journal of the European Economic Association, 1(1), 68123.
Angoshtari, B., Bayraktar, E. and Young, V.R. (2015) Minimizing the expected lifetime spent in drawdown under proportional consumption. Finance Research Letters, 15, 106114.
Bayraktar, E., David Promislow, S. and Young, V.R. (2014) Purchasing life insurance to reach a bequest goal. Insurance: Mathematics and Economics, 58, 204216.
Bayraktar, E., David Promislow, S. and Young, V.R. (2016) Purchasing term life insurance to reach a bequest goal while consuming. SIAM Journal on Financial Mathematics, 7(1), 183214.
Bayraktar, E. and Young, V.R. (2007) Correspondence between lifetime minimum wealth and utility of consumption. Finance and Stochastics, 11(2), 213236.
Bayraktar, E. and Young, V.R. (2016) Optimally investing to reach a bequest goal. Insurance: Mathematics and Economics, 70, 110.
Bayraktar, E. and Zhang, Y. (2015) Minimizing the probability of lifetime ruin under ambiguity aversion. SIAM Journal on Control and Optimization, 53(1), 5890.
Browne, S. (1997) Survival and growth with a liability: Optimal portfolio strategies in continuous time. Mathematics of Operations Research, 22(2), 468493.
Browne, S. (1999a) Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark. Finance and Stochastics, 3(3), 275294.
Browne, S. (1999b) Reaching goals by a deadline: Digital options and continuous-time active portfolio management. Advances in Applied Probability, 31(2), 551577.
Dubins, L.E. and Savage, L.J. (1965, 1976) How to Gamble if You Must: Inequalities for Stochastic Processes. 1965 edition, New York: McGraw-Hill. 1976 edition, New York: Dover.
Gu, A., Viens, F.G. and Yi, B. (2017) Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity. Insurance: Mathematics and Economics, 72, 235249.
Hu, D., Chen, S. and Wang, H. (2018) Robust reinsurance contracts with uncertainty about jump risk. European Journal of Operational Research, 266(3), 11751188.
Jaimungal, S. and Sigloch, G. (2012) Incorporating risk and ambiguity into a hybrid model of default. Mathematical Finance, 22(1), 5781.
Li, D., Zeng, Y. and Yang, H. (2018) Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps. Scandinavian Actuarial Journal, 2018(2), 145171.
Li, D. and Young, V.R. (2019) Optimal reinsurance to minimize the probability of ruin under ambiguity. Insurance: Mathematics and Economics, 87, 143152.
Luo, S., Wang, M. and Zhu, W. (2019) Maximizing a robust goal-reaching probability with penalization on ambiguity. Journal of Computational and Applied Mathematics, 348, 261281.
Maenhout, P.J. (2004). Robust portfolio rules and asset pricing. Review of Financial Studies, 17(4), 951983.
Milevsky, M. A. and Robinson, C. (2000) Self-annuitization and ruin in retirement, with discussion. North American Actuarial Journal, 4(4), 112129.
Moore, K.S. and Young, V.R. (2006) Optimal and simple, nearly-optimal rules for minimizing the probability of financial ruin in retirement. North American Actuarial Journal, 10(4), 145161.
Pestien, V.C. and Sudderth, W.D. (1985) Continuous-time red and black: How to control a diffusion to a goal. Mathematics of Operations Research, 10(4), 599611.
Pirvu, T. A. and Zhang, H. (2012) Optimal investment, consumption and life insurance under mean-reverting returns: The complete market solution. Insurance: Mathematics and Economics, 51(2), 303309.
Polyanin, A.D. and Zaitsev, V.F. (2003) Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edition. Boca Raton, Florida: Chapman and Hall.
Promislow, S.D. and Young, V.R. (2005) Minimizing the probability of ruin when claims follow Brownian motion with drift. North American Actuarial Journal, 9(3), 109128.
Rogers, L.C.G. (2013) Optimal Investment. Berlin: Springer.
Schmidli, H. (2002) On minimizing the ruin probability of investment and reinsurance. Journal of Applied Probability, 12(3), 890907.
Sudderth, W.D. and Weerasinghe, A. (1989) Controlling a process to a goal in finite time. Mathematics of Operations Research, 14(3), 400409.
Yi, B., Li, Z., Viens, F.G. and Zeng, Y. (2013) Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model. Insurance: Mathematics and Economics, 53(3), 601614.
Young, V.R. (2004). Optimal investment strategy to minimize the probability of lifetime ruin. North American Actuarial Journal, 8(4), 105126.
Young, V.R. and Zhang, Y. (2016) Lifetime ruin under ambiguous hazard rate. Insurance: Mathematics and Economics, 70, 125134.
Zeng, Y., Li, D. and Gu, A. (2016). Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insurance: Mathematics and Economics, 66, 138152.

Keywords

REACHING A BEQUEST GOAL WITH LIFE INSURANCE: AMBIGUITY ABOUT THE RISKY ASSET'S DRIFT AND MORTALITY'S HAZARD RATE

  • Xiaoqing Liang (a1) and Virginia R. Young (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed