Skip to main content Accessibility help

Physiological and biochemical indicators of mussel seed quality in relation to temperatures

  • Réjean Tremblay (a1), Thomas Landry (a2), Neil Leblanc (a3), Fabrice Pernet (a4), Carla Barkhouse (a2) and Jean-Marie Sévigny (a5)...


The bivalve’s aquaculture industry is an important component of the economy in Eastern Canada. Seed collection is an initial and critical activity in most bivalve aquaculture industries including mussel farming in Prince Edward Island, production is entirely dependent on natural spat collection. Although seed supply is not a concern from a quantitative standpoint, there are growing concerns about the quality of natural seed. The general objective of this study was to identify and assess mussel seed quality criteria on the basis of physiological and biochemical status under laboratory and field conditions. The performance, as estimated by metabolic measurements, lipid class composition, multi-locus heterozygosity (MLH) and survival to stressful environment of seed from 6 different stocks sources was first compared under laboratory conditions at 12 °C and 25 °C. Results showed that MLH varied among the six sources of mussels in a way which is consistent with the physiological and biochemical indicators of seed quality. Mussels from Shippagan (New Brunswick) and Tracadie (Prince Edward Island) were found to have the highest quality scores and the best adaptive capacity to extreme water temperature under laboratory conditions. The results of the stock-site reciprocal field studies are in general agreement with those of the laboratory experiments with higher survival of mussels from Shippagan, Tracadie and St. Peters Bays in the various study sites. Our results suggest that the measure of MLH and survival curves at stressful temperature could be a good criteria combination to identify the improved survival potential of mussels stocks.


Corresponding author

a Corresponding author:


Hide All
[1]Bayne, B.L., 1973, Aspects of the metabolism of Mytilus edulis during starvation. Neth. J. Sea Res. 37, 399410.
[2]Beaumont, A.R., Hawkins, M.P., Doig, F.L., Davies, I.M., Snow, M., 2008, Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders? J. Exp. Mar. Biol. Ecol. 367, 100110.
[3]Beaumont, A.R., Toro, J., 1996, Allozyme genetics of Mytilus edulis subjected to copper and nutritive stress. J. Mar. Biol. Assoc. UK 76, 10611071.
[4] Belkhir K., Borsa P., Goudet J., Chikhi L., Bonhomme F., 1998, Genetix, logiciel sous WindowsMT pour la génétique des populations. Laboratoire génome et populations, CNRS UPR 9060, Université de Montpellier II.
[5]Britten, H.B., 1996, Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50, 21582164.
[6]Brokordt, K., Leiva, N., Jeno, K., Martínez, G., Winkler, F., 2009, Effect of allozyme heterozygosity on basal and induced levels of heat shock protein (Hsp70), in juvenile Concholepas concholepas (Mollusca). J. Exp. Mar. Biol. Ecol. 370, 1826.
[7]Comeau, L.A., Drapeau, A., Landry, T., Davidson, J., 2008, Development of longline mussel farming and the influence of sleeve spacing in Prince Edward Island, Canada. Aquaculture 281, 5662.
[8]Crockett, E.L., 1998, Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. Am. Zool. 38, 291304.
[9]Folch, J., Lees, M., Sloane-Stanlez, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497509.
[10]Freites, L., Fernandez-Reiriz, M.J., Labarta, U., 2002, Lipid classes of mussel seeds Mytilus galloprovincialis of subtidal and rocky shore origin. Aquaculture 207, 97111.
[11]Fuentes, J., Reyero, I., Zapata, C., Alvarez, G., 1992, Influence of stock and culture site on growth rate and mortality of mussels (Mytilus galloprovincialis Lmk.) in Galicia, Spain. Aquaculture 105, 131142.
[12]Gallager, S.M., Mann, R., Sasaki, G.C., 1986, Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56, 81103.
[13]Gentili, M.R., Beaumont, A.R., 1988, Environmental stress, heterozygosity, and growth rate in Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 120, 145153.
[14] Gosling E., 1992, Systematics and geographic distribution of Mytilus. In: Gosling E. (Ed.), The mussel Mytilus: ecology, physiology, genetics and culture, Amsterdam, Elsevier, pp. 1–20.
[15] Hawkins, A.J.S., J. Widdows, A.R., Bayne, B.L., 1989, The relevance of whole-body protein metabolism to measured costs of maintenance and growth in Mytilus edulis. Physiol. Zool. 62, 745763.
[16]Heath, D.D., Rawson, P.D., Hilbish, T.J., 1995, PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 52, 26212627.
[17]Johnson, S.B., Geller, J.B., 2006, Larval settlement can explain the adult distribution of Mytilus californianus Conrad but not of M. galloprovincialis Lamarck or M. trossulus Gould in Moss Landing, central California: evidence from genetic identification of spat. J. Exp. Mar. Biol. Ecol. 328, 136145.
[18]Koehn, R.K., Gaffney, P.M., 1984, Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82, 17.
[19]Lane, D.J.W., Beaumont, A.R., Hunter, J.R., 1985, Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis. Mar. Biol. 84, 301308.
[20]Lang, R.P., Langdon, C.J., Taris, N.G., Camara, M.D., 2010, Use of laboratory assays to predict subsequent growth and survival of Pacific oyster (Crassostrea gigas) families planted in coastal waters. Aquaculture 306, 6879.
[21]LeBlanc, N., Landry, T., Stryhn, H., Tremblay, R., McNiven, M., Davidson, J., 2005, The effect of high air and water temperature on juvenile Mytilus edulis in Prince Edward Island, Canada. Aquaculture 243, 185194.
[22]LeBlanc, N., Tremblay, R., Davidson, J., Landry, T., McNiven, M., 2008, The effect of selection treatments on Mytilus edulis, modifications of genetic and physiological characteristics. Mar. Biol. 153, 11421152.
[23]Lesbarreres, D., Primmer, C., Laurila, A., Juha, M., 2005, Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Mol. Ecol. 14, 311323.
[24] Mallet A., Myrand B., 1995, The culture of the blue mussel in Atlantic Canada. In: Boghen A.D. (Ed.), Cold-Water Aquaculture in Atlantic Canada, 2nd edn., Moncton, Canada, Canadian Institute for Research on Regional Development, pp. 255–296.
[25]Mallet, A.L., Carver, C.E.A., Freeman, K.R., 1990, Summer mortality of the blue mussel in eastern Canada: spatial, temporal, stock and age variation. Mar. Ecol. Prog. Ser. 67, 3541.
[26]Moreau, V., Tremblay, R., Bourget, E., 2005, Distribution of Mytilus edulis and M. trossulus on the Gaspe coast in relation to spatial scale. J. Shellfish Res. 24, 545551.
[27]Myrand, B., Gaudreault, J., 1995, Summer mortality of blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (southern Gulf of St Lawrence, Canada). J. Shellfish Res. 14, 395404.
[28]Myrand, B., Tremblay, R., Sévigny, J.-M., 2002, Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J. Hered. 93, 238248.
[29]Nicastro, K.R., Zardi, G.I., McQuaid, C.D., Teske, P.R., Barker, N.P., 2008, Coastal topography drives genetic structure in marine mussels. Mar. Ecol. Prog. Ser. 368, 189195.
[30]Palumbi, S.R., 1992, Marine speciation on a small planet. Trends Ecol. Evol. 7, 114118.
[31] Parrish C.C., 1999, Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts M.T., Wainman B.C. (Eds.), Lipids in freshwater ecosystems, New York, Springer-Verlag, pp. 4–20.
[32]Pernet, F., Tremblay, R., Comeau, L., Guderley, H., 2007, Temperature adaptation in two bivalve species from different thermal habitat: energetics and remodeling of membrane lipids. J. Exp. Biol. 210, 29993014.
[33]Pernet, F., Tremblay, R., Gionet, C., Landry, T., 2006, Lipid remodeling in wild and selectively bred hard clams at low temperatures in relation to genetic and physiological parameters. J. Exp. Biol. 209, 46634675.
[34]Prato, E., Danieli, A., Maffia, M., Biandolino, F., 2010, Lipid and fatty acid compositions of Mytilus galloprovincialis cultured in the Mar Grande of Taranto (Southern Italy): feeding strategies and trophic relationships. Zool. Stud. 49, 211219.
[35]Rayssac, N., Pernet, F., Lacasse, O., Tremblay, R., 2010, Temperature effect on survival, growth, and triacylglycerol content during the early ontogeny of Mytilus edulis and M. trossulus. Mar. Ecol. Prog. Ser. 417, 183191.
[36]Rice, W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223225.
[37]Ridgway, G., 2001, Interpopulation variation in blue mussels, Mytilus edulis L., over short distances. Sarsia 86, 157161.
[38]Rousset, F., 2008, GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Notes 8, 103106.
[39]Siegel, D.A., Kinlan, B.P., Gaylord, B., Gaines, S.D., 2003, Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 260, 8396.
[40]Siegel, D.A., Mitarai, S., Costello, C.J., Gaines, S.D., Kendall, B.E., Warner, R.R., Winters, K.B., 2008, The stochastic nature of larval connectivity among nearshore marine populations. Proc. Nat. Acad. Sci. USA 105, 89748979.
[41] Smith G., 2009, P E I Mussel Monitoring Program. Technical Report No. 243.
[42]Star, B., Apte, S., Gardner, J.P.A., 2003, Genetic structuring among populations of the greenshell mussel Perna canaliculus revealed by analysis of randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser. 249, 171182.
[43]Suckling, K.E., Blair, H.A.F., Boyd, G.S., Craig, I.F., Malcolm, B.R., 1979, The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure. Biochim. Biophys. Acta 551, 1021.
[44]Thompson, R.J., Bayne, B.L., 1972, Active metabolism associated with feeding in the mussel Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 9, 111124.
[45]Toro, J.E., Ojeda, J.A., Vergara, A.M., 2004, The genetic structure of Mytilus chilensis (Hupe, 1854) populations along the Chilean coast based on RAPDs analysis. Aquac. Res. 35, 14661471.
[46] Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quéré, C., Moal, J., Muzellec, , Mazuret, M., Samain, J.-F., 2007, Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 262, 410418.
[47]Tremblay, R., Myrand, B., Sevigny, J.-M., 1998a, Genetic characterization of wild and suspension-cultured blue mussels (Mytilus edulis Linnaeus, 1758) in the Magdalen Islands (southern Gulf of St. Lawrence, Canada). J. Shellfish Res. 17, 11911202.
[48]Tremblay, R., Myrand, B., Sévigny, J.-M., Blier, P., Guderley, H., 1998b, Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J. Exp. Mar. Biol. Ecol. 221, 2758.
[49]Waite, L., Grant, J., Davidson, J., 2005, Bay-scale spatial growth variation of mussels Mytilus edulis in suspended culture, Prince Edward Island, Canada. Mar. Ecol. Prog. Ser. 297, 157167.
[50]Weir, B.S., Cockerham, C.C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.
[51]Zehmer, J.K., Hazel, J.R., 2003, Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J. Exp. Biol. 206, 16571667.


Physiological and biochemical indicators of mussel seed quality in relation to temperatures

  • Réjean Tremblay (a1), Thomas Landry (a2), Neil Leblanc (a3), Fabrice Pernet (a4), Carla Barkhouse (a2) and Jean-Marie Sévigny (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed