Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:22:57.176Z Has data issue: false hasContentIssue false

Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment

Published online by Cambridge University Press:  15 September 2011

Hélène Tabouret*
Affiliation:
Muséum National d’Histoire Naturelle, Département Milieux et Peuplements aquatiques, Biologie des Organismes marins et Ecosystèmes aquatiques (BOREA UMR CNRS-MNHN 7208), CP-026, 43 rue Cuvier, 75231, Paris, France Université des Antilles et de la Guyane, EA926 DYNECAR, Laboratoire de Biologie marine, BP 250, 97157 Pointe-à-Pitre, Guadeloupe, France Université de Pau et des Pays de l’Adour, UMR 5254, IPREM-LCABIE (Laboratoire de Chimie analytique bio-inorganique et Environnement), 64053 Pau Cedex 9, France
Clara Lord
Affiliation:
Muséum National d’Histoire Naturelle, Département Milieux et Peuplements aquatiques, Biologie des Organismes marins et Ecosystèmes aquatiques (BOREA UMR CNRS-MNHN 7208), CP-026, 43 rue Cuvier, 75231, Paris, France The University of Tokyo, Atmosphere and Ocean Research Institute, 5-1-5 Kashiwanoha, Kashiwa, 277-8564 Chiba, Japan
Gilles Bareille
Affiliation:
Université de Pau et des Pays de l’Adour, UMR 5254, IPREM-LCABIE (Laboratoire de Chimie analytique bio-inorganique et Environnement), 64053 Pau Cedex 9, France
Christophe Pécheyran
Affiliation:
Université de Pau et des Pays de l’Adour, UMR 5254, IPREM-LCABIE (Laboratoire de Chimie analytique bio-inorganique et Environnement), 64053 Pau Cedex 9, France
Dominique Monti
Affiliation:
Université des Antilles et de la Guyane, EA926 DYNECAR, Laboratoire de Biologie marine, BP 250, 97157 Pointe-à-Pitre, Guadeloupe, France
Philippe Keith
Affiliation:
Muséum National d’Histoire Naturelle, Département Milieux et Peuplements aquatiques, Biologie des Organismes marins et Ecosystèmes aquatiques (BOREA UMR CNRS-MNHN 7208), CP-026, 43 rue Cuvier, 75231, Paris, France
*
a Corresponding author: tabouret@mnhn.fr
Get access

Abstract

The amphidromous life cycle and morphological characteristics of Sicydiinae species allow them to colonise tropical freshwater habitats from the river mouth to the upper reaches of the river basin. Otolith microchemistry of 62 Sicydium punctatum from the Pérou River, Guadeloupe (French West Indies) was investigated with a femtosecond laser ablation-inductively coupled plasma mass spectrometer (fs-LA-ICP-MS) in order to reconstruct individual life history and follow the possible movements of Sicydium punctatum after the recruitment. Sr:Ca fingerprint confirmed the amphidromous cycle of this species. Variations of Ba:Ca in some individuals indicated changes in environmental conditions after the recruitment in the river. Even if results did not allow concluding to the specific origin of these variations, the hydrological regime and the biofilm composition may have a non negligible influence on the Ba availability. Results supported the use of multi-elemental signatures in otoliths and highlight the need for a large geographical and temporal sampling of Ba and Sr in freshwater systems for a better understanding of amphidromous fish species.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, T., Hirata, T., 2006, Differences in the trace element deposition in otoliths between marine- and freshwater-resident Japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Environ. Biol. Fishes 75, 173182. CrossRefGoogle Scholar
Arai, T., Hirata, T., Takagi, Y., 2007, Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta. Mar. Environ. Res. 63, 5566. CrossRefGoogle ScholarPubMed
Barats, A., Pécheyran, C., Amouroux, D., Dubascoux, S., Chauvaud, L., Donard, O.F.X., 2007, Matrix-matched quantitative trace element analysis in calcium carbonate shells by laser ablation ICP-MS: application to the determination of daily scale profiles in scallop shell (Pecten maximus). Anal. Bioanal. Chem. 387, 11311140. CrossRefGoogle Scholar
Bath, G.E., Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W., Lam, J.W.H., 2000, Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 17051714. CrossRefGoogle Scholar
Bell K.N.I., 1994, Life cycle, early life history, fisheries and recruitment dynamics of diadromous gobies of Dominica, W.I., emphasizing Sicydium punctatum Perugia. Ph.D. thesis, Memorial University, St. John’s, NF.
Bell, K.N.I., 1999, An overview of goby-fry fisheries. NAGA, ICLARM quart., 22, 3036. Google Scholar
Bell, K.N.I., 2009, What comes down must go up: The migration cycle of juvenile-return anadromous taxa. Am. Fish. Soc. Symp. 69, 321341. Google Scholar
Bell, K.N.I., Brown, J.A., 1995, Active salinity choice and enhanced swimming endurance in 0-8 day old larvae of diadromous gobies, including Sicydium punctatum (Pisces), in Dominica West Indies. Mar. Biol. 121, 409417. CrossRefGoogle Scholar
Bell, K.N.I., Pepin, P., Brown, J.A., 1995, Seasonal, inverse cycling of length and age-at-recruitment in the diadromous gobies Sicydium punctatum and Sicydium antillarum in Dominica, West Indies. Can. J. Fish. Aquat. Sci. 52, 15351545. CrossRefGoogle Scholar
Bonny, S.M., Jones, B., 2007, Diatom-mediated barite precipitation in microbial mats calcifying at Stinking Springs, a warm sulphur spring system in Northwestern Utah, USA. Sediment. Geol. 194, 223244. CrossRefGoogle Scholar
Buckel, J.A., Sharack, B.L., Zdanowicz, V.S., 2004, Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. J. Fish Biol. 64, 14691484. CrossRefGoogle Scholar
Cabidoche Y.M., Bleuse N., Mandar C., Morell M., Petit, V., 1994, Les ressources en eau. In: Morell M., Jérémie J.J. (Eds.). La Guadeloupe au fil de l’eau. Montpellier, ORSTOM, pp. 23–60.
Campana, S.E., 1999, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263297. CrossRefGoogle Scholar
Closs, G.P., Smith, M., Barry, B., Markwitz, A., 2003, Non-diadromous recruitment in coastal population of common bully (Gobiomorphus cotidianus). N. Z. J. Mar. Freshw. Res. 37, 301313. CrossRefGoogle Scholar
Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T., Jickells, T., 1997, The behaviour of dissolved barium in estuaries. Estuar. Coast. Shelf Sci. 45, 113121. CrossRefGoogle Scholar
Coutant, C.C., Chen, C.H., 1993, Strontium microstructures in scales of freshwater and estuarine striped bass (Morone saxatalis) detected by laser ablation mass spectrometry. Can. J. Fish. Aquat. Sci. 50, 13181323. CrossRefGoogle Scholar
Daverat, F., Tomas, J., 2006, Tactics and demographic attributes in the European eel Anguilla anguilla in the Gironde watershed, SW France. Mar. Ecol. Prog. Ser. 307, 247257. CrossRefGoogle Scholar
De Vries, M.C., Gillanders, B.M., Elsdon, T.S., 2005, Facilitation of barium uptake into fish otoliths: Influence of strontium concentration and salinity. Geochim. Cosmochim. Acta 69, 40614072. CrossRefGoogle Scholar
Dessert, C., Gaillardet, J., Dupre, B., Schott, J., Pokrovsky, O.S., 2009, Fluxes of high- versus low-temperature water-rock interactions in aerial volcanic areas: example from the Kamchatka Peninsula, Russia. Geochimica Geochim. Cosmochim. Acta 73, 148169. CrossRefGoogle Scholar
Dong, D., Li, Y., Zhang, J., Hua, X., 2003, Comparison of the adsorption of lead, cadmium, copper, zinc and barium to freshwater surface coatings. Chemosphere 51, 369373. CrossRefGoogle ScholarPubMed
Elfman, M., Limburg, K.E., Kristiansson, P., Svedäng, H., Westin, L., Wickström Wickström, H., Malmqvist, K., Pallon, J., 2000, Complex life histories of fishes revealed through natural information storage devices: case studies of diadromous events as recorded by otoliths. Nucl. Inst. Meth. B 161–163, 877881. CrossRefGoogle Scholar
Elsdon, T.S., Gillanders, B., 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 17961808. CrossRefGoogle Scholar
Elsdon, T.S., Gillanders, B.M., 2004, Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269284. CrossRefGoogle Scholar
Elsdon, T.S., Gillanders, B.M., 2005, Alternative life-history patterns of estuarine fish: Barium in otoliths elucidates freshwater residency. Can. J. Fish. Aquat. Sci. 62, 11431152. CrossRefGoogle Scholar
Feyrer, F., Hobbs, J., Baerwald, M., Sommer, T., Yin, Q.-Z., Clark, K., May, B., Bennett, W., 2007, Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish. Trans. Am. Fish. Soc. 136, 469476. CrossRefGoogle Scholar
Fisher, N.S., Guillard, R.L., Bankston, D.C., 1991, The accumulation of barium by marine phytoplankton grown in culture. J. Mar. Res. 49, 339354. CrossRefGoogle Scholar
Fitzsimons, J.M., Nishimoto, R.T., 1990, Territories and site tenacity in males of the Hawaiian stream goby Lentipes concolor (Pisces: Gobiidae). Ichthyol. Explor. Freshw. 1, 185189. Google Scholar
Gillanders, B.M., 2002, Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can. J. Fish. Aquat. Sci. 59, 111. CrossRefGoogle Scholar
Hamer, P.A., Jenkins, G.P., Coutin, P., 2006, Barium variation in Pagrus auratus (Sparidae) otoliths: A potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar. Coast. Shelf Sci. 68, 686702. CrossRefGoogle Scholar
Howland, K.L., Tonn, W.M., Babaluk, J.A., Tallman, R.F., 2001, Identification of freshwater and anadromous inconnu in the Mackenzie River system by analysis of otolith strontium. Trans. Am. Fish. Soc. 130, 725741. 2.0.CO;2>CrossRefGoogle Scholar
Iida, M., Watanabe, S., Yamada, Y., Lord, C., Keith, P., Tsukamoto, K., 2010, Survival and behavioral characteristics of amphidromous goby larvae of Sicyopterus japonicus (Tanaka, 1909) during their downstream migration. J. Exp. Mar. Biol. Ecol. 383, 1722. CrossRefGoogle Scholar
Jeandel, C., Tachikawa, K., Bory, A., Dehairs, F., 2000, Biogenic barium in suspended and trapped material as a tracer of export production in the tropical N-E Atlantic (EUMELI sites). Mar. Chem. 71, 125142. CrossRefGoogle Scholar
Jepsen, D.B., Winemiller, K.O., 2002, Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96, 4655. CrossRefGoogle Scholar
Keith, P., 2003, Biology and ecology of amphidromous Gobiidae in the Indo-Pacific and the Caribbean regions. J. Fish Biol. 63, 831847. CrossRefGoogle Scholar
Keith, P., Hoareau, T., Lord, C., Ah-Yane, O., Gimmoneau, G., Robinet, T., Valade, P., 2008, Characterisation of post-larval to juvenile stages, metamorphosis and recruitment of an amphidromous goby, Sicyopterus lagocephalus (Pallas 1767) (Teleostei: Gobiidae, Sicydiinae). Mar. Freshw. Res. 59, 876889. CrossRefGoogle Scholar
Lecomte-Finiger, R., 1999, L’otolithe : la “boîte noire” des Téléostéens. Année Biol. 38, 107122. Google Scholar
Lefrançois, E., Coat, S., Monti, D., Lepoint, G., Vachiéry, N., Gros, O., 2011, Epilithic biofilm as a key factor for small-scale river fisheries on Caribbean islands. Fish. Manage. Ecol. 18, 211220. CrossRefGoogle Scholar
Limburg, K.E., Landergren, P., Westin, L., Elfman, M., Kristiansson, P., 2001. Flexible modes of anadromy in Baltic sea trout: Making the most of marginal spawning streams. J. Fish Biol. 59, 682695. CrossRefGoogle Scholar
Lord C., 2009, Amphidromie, endémisme et dispersion : traits d’histoire de vie et histoire évolutive du genre Sicyopterus (Teleostei : Gobioidei : Sicydiinae). Ph.D. thesis, Muséum national d’Histoire naturelle, Paris.
Lord, C., Brun, C., Hautecoeur, M., Keith, P., 2010, Insights on endemism: comparison of the duration of the marine larval phase estimated by otolith microstructural analysis of three amphidromous Sicyopterus species (Gobioidei: Sicydiinae) from Vanuatu and New Caledonia. Ecol. Freshw. Fish 19, 2638. CrossRefGoogle Scholar
Louvat, P., Allègre, C.J., 1997, Present denudation rates on the island of Réunion determined by river geochemistry: Basalt weathering and mass budget between chemical and mechanical erosions. Geochim. Cosmochim. Acta 61, 36453669. CrossRefGoogle Scholar
Louvat, P., Allègre, C.J., 1998, Riverine erosion rates on Sao Miguel volcanic island, Azores Archipelago. Chem. Geol. 148, 177200. CrossRefGoogle Scholar
Manacop, P.R., 1953. The life history and habits of the goby, Sicyopterus extraneus Herre (añga) Gobiidae with an account of the goby-fry fishery of Cagayan River, Oriental Misamis (Province, Mindanao, Philippines). Philipp. J. Fish. 2, 160. Google Scholar
Marhon, L., Prigge, E., Zumholz, K., Klügel, A., Anders, H., Reinhold, H., 2009, Dietary effects on multi-elemental composition of European eel (Anguilla anguilla) otoliths. Mar. Biol. 156, 927933. CrossRefGoogle Scholar
Marquet G., Keith P., Vigneux E., 2003, Atlas des poissons et des crustacés d’eau douce de Nouvelle-Calédonie. Patrimoines Naturels 58, Paris, MNHN.
McCulloch, M., Cappo, M., Aumend, J., Mïller, W., 2005, Tracing the life history of individual barramundi using laser ablation MC-ICP-MC Sr-isotopic and Sr/Ba ratios in otoliths. Mar. Freshw. Res. 56, 637644. CrossRefGoogle Scholar
McDowall R.M., 1988, Diadromy in fishes: migrations between freshwater and marine environments. London, Croom Helm.
Milton, D., Halliday, I., Sellin, M., Marsh, R., Staunton-Smith, J., Woodhead, J., 2008, The effect of habitat and environmental history on otolith chemistry of barramundi Lates calcarifer in estuarine populations of a regulated tropical river. Estuar. Coast. Shelf Sci. 78, 301315. CrossRefGoogle Scholar
Monti D., Lefrançois E., 2010, Le biofilm épilithique, un élément fondamental du fonctionnement des milieux d’eau douce antillais : recherche de bioindicateurs dans un contexte de pollution par les pesticides. Rapport du Ministère de l’Outre-Mer, Paris.
Moore, W.S., Shaw, T.J., 2008, Fluxes and behavior of radium isotopes, barium, and uranium in seven southeastern US rivers and estuaries. Mar. Chem. 108, 236254. CrossRefGoogle Scholar
Rad, S.D., Allègre, C.J., Louvat, P., 2007, Hidden erosion on volcanic islands. Earth Planet. Sci. Lett. 262, 109124. CrossRefGoogle Scholar
Radtke, R.L., Kinzie, R.A., 1996, Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevation locations. Trans. Am. Fish. Soc. 125, 613621. 2.3.CO;2>CrossRefGoogle Scholar
Ryan, P.A., 1991, The success of Gobiidae in tropical Pacific insular streams. N.Z. J. Zool. 18, 2530. CrossRefGoogle Scholar
Shen, K.N., Tzeng, W.N., 2002, Formation of a metamorphosis check in otolith of the amphidromous goby Sicyopterus japonicus. Mar. Ecol. Prog. Ser. 228, 205211. CrossRefGoogle Scholar
Shen, K.N., Lee, Y.C., Tzeng, W.N., 1998, Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zool. Stud. 37, 322329. Google Scholar
Sinclair, D.J., McCulloch, M., 2004. Corals record low mobile barium concentrations in the Burdekin river during the 1974 flood: evidence for limited Ba supply to rivers? Paleogeog. Palaeoclimatol. Palaeoecol. 214, 155174. CrossRefGoogle Scholar
Tabouret H., 2009, Search for markers of habitat use and contaminant exposure in European eel Anguilla anguilla from the Adour estuary: from the molecular response to the otolith microchemistry. Ph.D. thesis, Pau, Université de Pau et des Pays de l’Adour.
Tabouret, H., Bareille, G., Claverie, F., Pécheyran, C., Prouzet, P., Donard, O.F.X., 2010, Simultaneous use of strontium:calcium and barium:Calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Mar. Environ. Res. 70, 3545. CrossRefGoogle Scholar
Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W., Lam, J.W.H., 1998, Trace element signatures in otoliths record natal river of juvenile American shad (Alosa spadissima). Limnol. Oceanogr. 43, 18261835. CrossRefGoogle Scholar
Tsunagawa, T., Suzuki, T., Arai, T., 2009, Migratory history of Rhinogobius sp. OR morphotype “Shimahire” as revealed by otolith Sr:Ca ratios. Ichthyol. Res. 57, 1015. Google Scholar
Tzeng, W.N., 1996, Effects of salinity and ontogenic movements on strontium:calcium ratios in the otoliths of Japanese eel, Anguilla japonica Temminck and Schlegel. J. Exp. Mar. Biol. Ecol. 199, 111122. CrossRefGoogle Scholar
Valade, P., Lord, C., Grondin, H., Bosc, P., Taillebois, L., Iida, M., Tsukamoto, K., Keith, P., 2009, Early life history and description of larval stages of an amphidromous goby, Sicyopterus lagocephalus (Gobioidei: Sicydiinae). Cybium 33, 309319. Google Scholar
Walther, B.D., Thorrold, S.R., 2006, Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar. Ecol. Prog. Ser. 311, 125130. CrossRefGoogle Scholar
Wells, B.K., Rieman, B.E., Clayton, J.L., Horan, D.L., Jones, C.M., 2003, Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: The potential application of hard-part chemistry to describe movements in freshwater. Trans. Am. Fish. Soc. 132, 409424. 2.0.CO;2>CrossRefGoogle Scholar
Yoshinaga, J., Nakama, A., Morita, M., Edmonds, J.S., 2000, Fish otolith reference material for quality assurance of chemical analyses. Mar. Chem. 69, 9197. CrossRefGoogle Scholar