Skip to main content Accessibility help
×
Home

Is the pearl layer a reversed shell? A re-examination of the theory of pearl formation through physical characterizations of pearl and shell developmental stages in Pinctada margaritifera

  • Jean-Pierre Cuif (a1), Yannicke Dauphin (a1), Lauren Howard (a2), Julius Nouet (a1), Stéphan Rouzière (a3) and Murielle Salomé (a4)...

Abstract

A series of physical characterization methods (UV fluorescence microscopy, X-ray microdiffraction, backscattered electron imaging and X-ray absorption spectroscopy) were applied to Polynesian pearls collected after different cultivation periods, varying from three weeks to eighteen months. Through this rigorous time-based sampling, 120 pearls produced by 20 different donor oysters were compared. Results show that the structure of the pearl layer can be understood as a sequence of distinct secretion processes whose progressive occurrence through time may lead to variously arranged and sometimes aberrant mineralized structures. By making comparisons with the structure and growth mode of the Pinctada margaritifera shell, this study shows that the currently accepted theory that views the pearl-bed as a “reversed shell” cannot account for the diversity of the microstructural patterns and mineralogical properties observed in the pearl layers. From a practical and economic view point, it appears that development of these pre-nacreous materials superposed onto a perfectly round-shaped nucleus is the main cause of shape irregularities in pearls and the consequent decrease in their value.

Copyright

Corresponding author

aCorresponding author: jean-pierre.cuif@u-psud.fr

References

Hide All
[1]Arnaud-Haond, S., Goyard, E., Vonau, V., Herbaut, C., Prou, J., Saulnier, D., 2007, Pearl formation: persistence of the graft during the entire process of biomineralization. Mar. Biotechnol. 9, 113116.
[2]Baronnet, A., Cuif, J.P., Dauphin, Y., Farre, B., Nouet, J., 2008, Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometer ranges. Mineral. Mag. 72, 617626.
[3]Cuif, J.P., Ball, A.D., Dauphin, Y., Farre, B., Nouet, J., Perez-Huerta, A., Salomé, M., Williams, C.T., 2008, Structural, mineralogical and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia. Microsc. Microanal. 14, 405417.
[4] Cuif J.P., Dauphin Y., Sorauf J.E., 2011, Biominerals and fossils through time. Cambridge University Press.
[5] Cuif, J.P., Dauphin, Y., Doucet, J., Salomé, M., Susini, J., 2003, XANES mapping of organic sulfate in three scleractinian coral skeletons. Geoch. Cosmoch. Acta, 67, 7583.
[6]Dauphin, Y., 2003, Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid Bivalves: Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 278, 1516815177.
[7]Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J., Williams, C.T., 2003a, In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J. Struct. Biol. 142, 272280.
[8]Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J., Williams, C.T., 2003b, In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur edge. Mar. Biol. 142, 299304.
[9]Dauphin, Y., Ball, A.D., Cotte, M., Cuif, J.P., Meibom, A., Salomé, M., Susini, J., Williams, C.T., 2008, Structure and composition of the nacre – prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal. Bioanal. Chem. 390, 16591169.
[10]Dauphin, Y., Brunelle, A., Cotte, M., Cuif, J.P., Farre, B., Laprévote, O., Meibom, A., Salomé, M., Williams, C.T., 2010, A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (Mollusca, Bivalvia). Microsc. Microanal. 16, 9198
[11]Farre, B., Brunelle, A., Laprévote, O., Cuif, J.P., Williams, C.T., Dauphin, Y., 2011, Shell layers of the black-lip pearl oyster Pinctada margaritifera: matching microstructure and composition. Comp. Biochem. Physiol. B 159, 131139.
[12]Fryda, J., Kliknarova, K., Frydiva, B., Mergl, M., 2010, Variability in the crystallographic texture of bivalve nacre. Bull. Geosci. 85, 645662.
[13]Inoue, N., Ishibashi, R., Ishikawa, T., Atsumi, T., Aoki, H., Komaru, A., 2011, Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac? Mar. Biotechnol. 13, 4855.
[14] Joubert C., Piquemal D., Maris B., Manchon L., Pierrat F., Zanella-Clleaon I., Cochennec-Laureau N., Guegen Y., Montgnani C., 2010, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11, 613 doi: 10.11861471-2164-11-613.
[15]Kawakami, I.K., 1952a, Studies on pearl formation. On the regeneration and transformation of the mantle piece in the pearl oyster. Mem. Fac. Kyushu Univ., Ser. E 1, 8389.
[16] Kawakami, I.K., 1952b, Marine regeneration in pearl oyster (Pinctada martensii). J. Fuji Pearl. Inst. 2(2), 14.
[17]Kobayashi, I., 2008, Scanning electron microscopic structure of the prismatic layer in the Bivalvia. Front. Mater. Sci. China 2, 246252.
[18]Kong, Y., Jing, G., Yan, Z., Li, C., Gong, N., Zhu, F., Li, D., Zhang, Y., Zheng, G., Wang, H., Xie, L., Zhang, R., 2009, Cloning and characterization of prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J. Biol. Chem. 284, 1084210854.
[19] Nudelman, F., Shimoni, E., Klein, E. ,Rousseau, M., Bourrat, X., Lopez, E., Addadi, L., Weiner, S., 2008, Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryoscanning electron microscopy study. J. Struct. Biol. 162, 290300.
[20]Okumura, T., Suzuki, M., Nagasawa, H., Kogure, T., 2010, Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. Micron 41, 821826.
[21]Rouzière, S., Jourdanneau, E., Kasmi, B., Petermann, D., Albouy, P.A., 2010, A laboratory X-ray microbeam for combined X-ray diffraction and fluorescence measurements. J. Appl. Cryst. 43, 11311133.
[22]Saleuddin, A.S.M., 1974, An electron microscopic study of the formation and structure of the periostracum in Astarte (Bivalvia). Rev. Can. Zool. 52, 14631471.
[23] Schâffer, T.E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almquist, N., Zaremba, C., Belcher, A.M, Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K., 1997, Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges. Chem. Mater. 9, 17311740.
[24]Suzuki, S., Uozumi, S., 1981, Organic components of prismatic layers in molluscan shells. J. Fac. Sci. Hokkaido Univ., Ser. IV. 20, 720.
[25]Suzuki, M., Sakuda, S., Nagasawa, H., 2007, Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci. Biotechnol. Biochem. 71, 17351744.
[26] Suzuki, M., Saruwatari, K., Kogure, T., Yamamoto, Y., Nishimura, T., Kato, T., Nagasawa, H., 2009, An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 5946, 13881390.
[27]Tagaki, R., Miyashita, T., 2010, Prismin: A new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool. Sci. 27, 416426.
[28]Taylor, J.D., Kennedy, W.J., Hall, A., 1969, The shell structure and mineralogy of the Bivalvia. I. Introduction. Nuculacae–Trigonacae. Bull. Br. Mus. Nat. Hist. Zool. 3, 1125.
[29] Taylor J., Strack E., 2008, Pearl production. In: Southgate P.C., Lucas J.S. (Eds.). The pearl oyster, Amsterdam, Elsevier, pp. 272–302.
[30]Tsukamoto, D., Sarashina, I., Endo, K., 2004, Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem. Biophys. Res. Comm. 320, 11751180.
[31]Zhang, C., Xie, L., Huang, J., Liu, X., Zhang, R., 2006, A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem. Biophys. Res. Comm. 344, 735740.
[32] Aquat. Living Resour. 23, 277–284 (2010)

Keywords

Is the pearl layer a reversed shell? A re-examination of the theory of pearl formation through physical characterizations of pearl and shell developmental stages in Pinctada margaritifera

  • Jean-Pierre Cuif (a1), Yannicke Dauphin (a1), Lauren Howard (a2), Julius Nouet (a1), Stéphan Rouzière (a3) and Murielle Salomé (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed