Skip to main content Accessibility help

Effects of Turtle Excluder Devices on bycatch and discard reduction in the demersal fisheries of Mediterranean Sea

  • Antonello Sala (a1), Alessandro Lucchetti (a1) and Marco Affronte (a2)


The Central Mediterranean provides important neritic habitats for loggerhead turtles (Caretta caretta), but Mediterranean bottom trawlers catch an estimated 30 000 turtles a year, with 25% mortality. Mortality by trawling is mainly due to enforced apnoea during towing activity. In order to reduce the submergence time and consequent turtle mortality, a specific technical modification was developed in the early 1980s: the Turtle Excluder Device (TED). In this paper, we field-tested a typical Supershooter TED and three new types of low-cost TED, built with different designs and materials, incorporating aspects of US and Australian TEDs, as well as design features to improve handling and catch rates. The performance of the TEDs was investigated under commercial fishing conditions in diverse trawling grounds in the Adriatic Sea (Mediterranean). All TEDs were easy to operate and did not require changes to normal fishing operations. Due to lack of entry of turtles it was not possible to evaluate the ability of the different TEDs to release turtles, but one large loggerhead turtle (C. caretta) was captured during the experimental tows and was successfully excluded by the Supershooter. The TEDs reduced anthropogenic debris and, consequently, sorting operations on board. Among the four TEDs tested, both the semi-rigid TED and the Supershooter performed in accordance with the design objectives: total discards were reduced but total commercial catches were not significantly reduced. With the Supershooter, all European hake (Merluccius merluccius) individuals equal to or above 16 cm were found in the codend and 10–15% of those between 5.0 and 15.5 cm were released. In general, the total discard rate of the TED-equipped nets was reduced to around 20–60%. Since the Council Regulation (EC) No. 1967/2006 called for a discard reduction policy in waters under the jurisdiction of the European Union, TEDs may have some broader value in this context.


Corresponding author

aCorresponding author:


Hide All
[1]Atabey, S., Taskavak, E., 2001, A preliminary study on the prawn trawls excluding sea turtles. Urun. Derg./ J. Fish. Aquat. Sci. 18, 7179.
[2]Breslow, N.E., Clayton, D.G., 1993, Approximate inference in generalized linear models. J. Am. Stat. Assoc. 88, 925.
[3] Casale P., 2008, Incidental catch of marine turtles in the Mediterranean Sea: captures, mortality, priorities. WWF Italy, Rome.
[4]Casale, P., Laurent, L., De Metrio, G., 2004, Incidental capture of marine turtles by the Italian trawl fishery in the north Adriatic Sea. Biol. Conserv. 119, 287295.
[5] Cochran W.G., 1977, Sampling techniques, Wiley, New York. Council Regulation (EC) No. 1967/2006 of 21 December 2006, Concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, amending Regulation (EEC) No. 2847/93 and repealing Regulation (EC) No. 1626/94. Official Journal of the European Union L.
[6]Dremière, P.Y., Fiorentini, L., Cosimi, G., Leonori, I., Sala, A., Spagnolo, A., 1999, Escapement from the main body of the bottom trawl used for the Mediterranean International Trawl Survey (MEDITS). Aquat. Living Resour. 12, 207217.
[7]FAO, 1999, Managing fishing capacity: selected papers on underlying concepts and issues. FAO Fish. Tech. Pap. No. 386, Rome, FAO.
[8] Finney D.J., 1971, Statistical Method in Biological Assay, Griffin, London.
[9] Fiorentini, L., Dremière, P.Y., Leonori, I., Sala, A., Palumbo, V., 1999, Efficiency of the bottom trawl used for the Mediterranean International Trawl Survey (MEDITS). Aquat. living Resour., 12, 187205
[10] Fonteyne R., 2005, Protocol for the use of an objective mesh gauge for scientific purposes. ICES Coop. Res. Rep. No. 279.
[11]Fryer, R.J., 1991, A model of between-haul variation in selectivity. ICES J. Mar. Sci. 48, 281290.
[12]Hall, M.A., 1996, On bycatches. Rev. Fish Biol. Fish. 6, 319352.
[13]Henwood, T.A., Stuntz, W.E., 1987, Analysis of sea turtle captures and mortalities during commercial shrimp trawling. Fish. Bull. 85, 813817.
[14]Holst, R., Revill, A., 2009, A simple statistical method for catch comparison studies. Fish. Res. 95, 254259.
[15]Kot, C.Y., Boustany, A.M., Halpin, P.N., 2010, Temporal patterns of target catch and sea turtle bycatch in the US Atlantic pelagic longline fishing fleet. Can. J. Fish. Aquat. Sci. 67, 4257.
[16]Laurent, L., Lescure, J., 1994, L’hivernage des tortues caouannes Caretta caretta (L.) dans le sud tunisien. Rev. Ecol. Terre Vie 49, 6386.
[17] Laurent L., Abd El-Mawla E.M., Bradai M.N., Demirayak F., Oruc A., 1996, Reducing sea turtle mortality induced by Mediterranean fisheries: trawling activity in Egypt, Tunisia and Turkey, Report for the WWF International Mediterranean Programme, WWF Project 9E0103.
[18] Lazar B., Margaritoulis D., Tvrtkovic N., 2000, Migrations of the loggerhead sea turtle (Caretta caretta) into the Adriatic Sea. In: Proc. 18th International Symposium on Sea Turtle Biology and Conservation, 3–7 March 1998, Mazatlan, Mexico, NOAA Technical Memorandum NMFS-SEFSC, Miami.
[19]Lazar, B., Margaritoulis, D., Tvrtkovic, N., 2004, Tag recoveries of the loggerhead sea turtle Caretta caretta in the eastern Adriatic Sea: implications for conservation. J. Mar. Biol. Assoc. UK 84, 475480.
[20]Lucchetti, A., Sala, A., 2010, An overview of loggerhead sea turtle (Caretta caretta) bycatch and technical mitigation measures in the Mediterranean Sea. Rev. Fish Biol. Fish. 20, 141161.
[21]McConnaughey, R.A., Conquest, L., 1993, Trawl survey estimation using a comparative approach based on lognormal theory. Fish. Bull. 91, 107118.
[22] Margaritoulis D., 1988, Post-nesting movements of loggerhead sea turtles tagged in Greece. Rapp. P.V. Réun. Comm. Internat. Explor. Scient. Mer Méditerranée 31, 284.
[23] Mitchell J.F., Watson J.W., Foster D.G., Caylor R.E., 1995, The turtle excluder device (TED): a guide to better performance, NOAA Technical Memorandum NMFS-SEFSC.
[24]Prat, J., Antonijuan, J., Folch, A., Sala, A., Lucchetti, A., Sardà, F., Manuel, A., 2008, A simplified model of the interaction of the trawl warps, the otterboards and netting drag. Fish. Res. 94, 109117.
[25] R Development Core Team, 2009, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL
[26]Robins, J.B., McGilvray, J.G., 1999, The AusTED II, an improved trawl efficiency device, 2. Commercial performance. Fish. Res. 40, 2941.
[27]Sala, A., Lucchetti, A., Buglioni, G., 2004, The change in physical properties of some nylon (PA) netting samples before and after use. Fish. Res. 69, 181188.
[28]Sala, A., Priour, D., Herrmann, B., 2006, Experimental and theoretical study of red mullet (Mullus barbatus) selection in codends of Mediterranean bottom trawls. Aquat. Living Resour. 19, 317327.
[29]Sala, A., Lucchetti, A., Buglioni, G., 2007, The influence of twine thickness on the size selectivity of polyamide codends in a Mediterranean bottom trawl. Fish. Res. 83, 192203.
[30] Sala, A., Lucchetti, A., Piccinetti, C., Ferretti, M., 2008. Size selection by diamond- and square-mesh codends in multi-species Mediterranean demersal trawl fisheries. Fish. Res. 93, 821.
[31]Sala, A., Lucchetti, A., 2010, The effect of mesh configuration and codend circumference on selectivity in the Mediterranean trawl Nephrops fishery. Fish. Res. 103, 6372.
[32]Sala, A., Prat, J., Antonijuan, J., Lucchetti, A., 2009, Performance and impact on the seabed of an existing- and an experimental otterboard: Comparison between model testing and full-scale sea trials. Fish. Res. 100, 156166.
[33]Stabenau, E.K., Heming, T.A., Mitchell, J.F., 1991, Respiratory, acid-base and ionic status of Kemp’s ridley sea turtles (Lepidochelys kempi) subjected to trawling. Comp. Biochem. Physiol. 99, 107111.
[34]Tucker, A.D., Robins, J.B., McPhee, D.P., 1997, Adopting TEDs in Australia and the USA: what differences are there in technology transfer, promotion and acceptance. Coast. Manage. 25, 405421.
[35] Tudela S., 2004, Ecosystem effects of fishing in the Mediterranean: an analysis of the major threats of fishing gear and practices to biodiversity and marine habitats. Studies and Reviews, General Fish. Comm. Mediterranean, FAO, Rome, No. 74.
[36]Watson, J.W., Epperly, S.P., Shah, A.K., Foster, D.G., 2005, Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Can. J. Fish. Aquat. Sci. 62, 965981.


Type Description Title

OLM - alr110010 - 24-2 (2011) p183 - Effects of Turtle Excluder Devices...

 PDF (42 KB)
42 KB

Effects of Turtle Excluder Devices on bycatch and discard reduction in the demersal fisheries of Mediterranean Sea

  • Antonello Sala (a1), Alessandro Lucchetti (a1) and Marco Affronte (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed