Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-30T15:58:51.193Z Has data issue: false hasContentIssue false

Cultured heart cells from oyster : an experimental approach for evaluation of the toxicity of the marine pollutant tributyltin

Published online by Cambridge University Press:  16 July 2012

Mickaël Droguet*
Affiliation:
EA 1274 M2S, Facteurs nerveux et Structuration tissulaire, UFR Médecine et Sciences de la Santé, 22 avenue Camille Desmoulins, 29238 Brest Cedex, France
Nicole Devauchelle
Affiliation:
IFREMER, Centre de Brest, BP 70, 29280 Plouzané Cedex, France
Brian Quinn
Affiliation:
Irish Centre for Environmental Toxicology, Galway-Mayo Institute of Technology, Dublin Rd, Galway, Ireland
Germaine Dorange
Affiliation:
EA 1274 M2S, Facteurs nerveux et Structuration tissulaire, UFR Médecine et Sciences de la Santé, 22 avenue Camille Desmoulins, 29238 Brest Cedex, France
*
a Corresponding author : mickael.droguet@univ-brest.fr
Get access

Abstract

European Community regulations on chemicals promote alternative methods to test substances presenting potential risks for the environment. In the present work, cultured atrial cells isolated from oyster (Crassostrea gigas) were used as an experimental model to investigate the toxicity of tributyltin (TBT) after short-time exposure at concentrations representative of those that can be measured in seawater, marine sediments and/or bivalves bioaccumulating this pollutant. In vitro and in vivo assays produce values of the same order of magnitude for both animal/cell survival and heart/cardiomyocyte beating rate. The survival rate of whole animals decreased from 10-6 M TBT after 3 days. For cultured cells, the viability, evaluated using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay, significantly decreased after two days of treatment with 10-6 M TBT, and after six days with 10-10 M TBT. The percentage of apoptotic cells, quantified by flow cytometry and YO-PRO®-1 iodide, a nucleic acid stain that only permeates cells that are beginning to undergo apoptosis, increased significantly in these cases. Moreover, intracellular concentration of Ca++ had increased after 10 min of exposition to 10-6 M, and could be associated with apoptotic processes. As patch clamp experiments showed that Ca++ conductance was decreased, intracellular calcium increase could mainly be due to a release from internal stores. The decreases in beating rhythm could be explained by the decrease in adenosine triphosphate (ATP) production revealed by 31 P nuclear magnetic resonance (NMR) spectroscopy and confirmed by the increase of the KATP channel conductance. The related hyperpolarization and the disturbances of the energetic metabolism were clearly related to the loss of the atrial cell contractility and viability.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almers, W., Stanfield, P.R., Stühmer, W., 1983, Lateral distribution of sodium and potassium channels in frog skeletal muscle : measurements with a patch clamp technique. J. Physiol. 336, 261284. CrossRefGoogle ScholarPubMed
Aluoch, A., Odman-Ghazi, S., Whalen, M., 2007, Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch. Toxicol. 81, 271277. CrossRefGoogle Scholar
Alzieu, C., Michel, P., Tolosa, I., Bacci, E., Mee, L.D., Readman, J.W., 1991, Organotin coumpounds in the Mediterranean : a continuing cause for concern. Mar. Environ. Res. 32, 261270. CrossRefGoogle Scholar
Alzieu, C., 2000, Environmental impact of TBT : the French experience. Sci. Tot. Environ. 258, 99102. CrossRefGoogle Scholar
Anderson, R.S., Unger, M.A., Burreson, E.M., 1996, Enhancement of Perkinsus marinus disease progression in TBT-exposed oysters (Crassostrea virginica). Mar. Environ. Res. 42, 177180. CrossRefGoogle Scholar
Anderson, R.S., Brubacher, L.L., Burreson, E.M., Unger, M.A., 1997, Effects of in vitro exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes. Environ. Res. 74, 8490. CrossRefGoogle Scholar
Antizar-Ladislao, B., 2008, Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. Environ. Intl. 34, 292308. CrossRefGoogle ScholarPubMed
Aw, T.Y., Nicotera, P., Manzo, L., Orrenius, S., 1990, Tributyltin stimulates apoptosis in rat thymocytes. Arch. Biochem. Biophys. 283, 4650. CrossRefGoogle ScholarPubMed
Berto, D., Giani, M., Boscolo, R., Covelli, S., Giovanardi, O., Massironi, M., Grassia, L., 2007, Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy). Mar. Pollut. Bull. 55, 425435. CrossRefGoogle Scholar
Bhosle, N.B., Garg, A., Jadhav, S., Harjee, R., Sawant, S.S., Venkat, K., Anil, A.C., 2004, Butyltins in water, biofilm, animals and sediments of the west coast of India. Chemosphere 57, 897907. CrossRefGoogle Scholar
Burgeot, T., His, E., Galgani, F., 1995, The micronucleus assay in Crassostrea gigas for the detection of seawater genotoxicity. Mutat. Res. 342, 125140. CrossRefGoogle ScholarPubMed
Burton, E.D., Phillips, I.R., Hawker, D.W., 2004, Sorption and desorption behavior of tributyltin with natural sediments. Environ. Sci. Technol. 38, 66946700. CrossRefGoogle ScholarPubMed
Cameron, J.A., Kodavanti, P.R., Pentyala, S.N., Desaiah, D., 1991, Triorganotin inhibition of rat cardiac adenosine triphosphatases and catecholamine binding. J. Appl. Toxicol. 11, 403409. CrossRefGoogle ScholarPubMed
Châtel, A., Talarmin, H., Hamer, B., Schröder, H.C., Müller, W.E., Dorange, G., 2011, MAP kinase cell signaling pathway as biomarker of environmental pollution in the sponge Suberites domuncula. Ecotoxicology 20, 17271740. CrossRefGoogle ScholarPubMed
Chow, S.C., Kass, G.E., McCabe, M.J. Jr., Orrenius, S., 1992, Tributyltin increases cytosolic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux. Arch. Biochem. Biophys. 298, 143149. CrossRefGoogle ScholarPubMed
Cima, F., Ballarin, L., 2004, Tributyltin-sulfhydryl interaction as a cause of immunotoxicity in phagocytes of tunicates. Ecotoxicol. Environ. Saf. 58, 386395. CrossRefGoogle Scholar
Cima, F., Bragadin, M., Ballarin, L., 2008, Toxic effects of new antifouling compounds on tunicate haemocytes I. Sea-nine 211 and chlorothalonil. Aquat Toxicol. 86, 299312. CrossRefGoogle Scholar
Corsini, E., Viviani, B., Marinovich, M., Galli, C.L., 1997, Role of mitochondria and calcium ions in tributyltin-induced gene regulatory pathways. Toxicol. Appl. Pharmacol. 145, 7481. CrossRefGoogle Scholar
Domart-Coulon, I., Auzoux-Bordenave, S., Doumenc, D., Khalanski, M., 2000, Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol. in vitro 14, 245251. CrossRefGoogle ScholarPubMed
Dong, W., Muramoto, W., Nagai, Y., Takehana, K., Stegeman, J.J., Teraoka, H., Hiraga, T., 2006, Retinal neuronal cell is a toxicological target of tributyltin in developing zebrafish. J. Vet. Med. Sci. 68, 573579. CrossRefGoogle ScholarPubMed
Dowson, P.H., Bubb, J.M., Lester, J.N., 1993, Temporal distribution of organotins in the aquatic environment : five years after the 1987 UK retail began on TBT-base antifouling paints. Mar. Pollut. Bull. 26, 487494. CrossRefGoogle Scholar
Droguet M., 2006, Étude des caractéristiques fonctionnelles de cardiomyocytes d’huître en culture. UFR Médecine et Sciences de la Santé, Université de Bretagne Occidentale, Brest, Ph.D.
Gagnaire, B., Thomas-Guyon, H., Burgeot, T., Renault, T., 2006, Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes : screening of 23 molecules using flow cytometry. Cell. Biol. Toxicol. 22, 114. CrossRefGoogle Scholar
Gagné, F., Blaise, C., Pellerin, J., Pelletier, E., Douville, M., Gauthier-Clerc, S., Viglino, L., 2003, Sex alteration in soft-shell clams (Mya arenaria) in an intertidal zone of the Saint Lawrence river (Quebec, Canada). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134, 189198. CrossRefGoogle Scholar
Galgani, F., Senia, J., Guillou, J.L., Laugier, T., Munaron, D., Andral, B., Guillaume, B., Coulet, E., Boissery, P., Brun, L., Bertrandy, M.C., 2009, Assessment of the environmental quality of French continental Mediterranean lagoons with oyster embryo bioassay. Arch. Environ. Contam. Toxicol. 57, 540451. CrossRefGoogle ScholarPubMed
Gopalakrishnan, S., Huang, W.B., Wang, Q.W., Wu, M.L., Liu, J., Wang, K.J., 2011, Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 154, 120128. CrossRefGoogle Scholar
Greco, L., Pellerin, J., Capri, E., Garnerot, F., Louis, S., Fournier, M., Sacchi, A., Fusi, M., Lapointe, D., Couture, P., 2011, Physiological effects of temperature and a herbicide mixture on the soft-shell clam Mya arenaria (Mollusca, Bivalvia). Environ. Toxicol. Chem. 30, 132141. CrossRefGoogle Scholar
Grynkiewicz, G., Poenie, M., Tsien, R.Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 34403450. Google ScholarPubMed
Hagger, J.A., Depledge, M.H., Galloway, T.S., 2005, Toxicity of tributyltin in the marine mollusc Mytilus edulis. Mar. Pollut. Bull. 51, 816826. CrossRefGoogle ScholarPubMed
Hagger, J.A., Depledge, M.H., Oehlmann, J., Jobling, S., Galloway, T.S., 2006, Is there a causal association between genotoxicity and the imposex effect? Environ. Health Perspect. 114, 2026. CrossRefGoogle Scholar
Hanana H., 2011, Etablissement de primocultures de cellules cardiaques de palourde Ruditapes decussatus – Étude des courants ioniques et des MAP kinases après exposition des cellules à des xénobiotiques. UFR Médecine et Sciences de la Santé. Université de Bretagne Occidentale, Brest, Ph.D.
Hanana, H., Talarmin, H., Pennec, J.P., Droguet, M., Gobin, E., Marcorelle, P., Dorange, G., 2011, Establishment of functional primary cultures of heart cells from the clam Ruditapes decussatus. Cytotechnology 63, 295305. CrossRefGoogle ScholarPubMed
Horiguchi, T., 2006, Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ. Sci. 13, 7787. Google ScholarPubMed
Horiguchi, T., Kojima, M., Hamada, F., Kajikawa, A., Shiraishi, H., Morita, M., Shimizu, M., 2006, Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations. Environ. Health Perspect. 114 (Suppl. 1), 1319. Google Scholar
Horiguchi, T., Lee, J.H., Park, J.C., Cho, H.S., Shiraishi, H., Morita, M., 2012, Specific accumulation of organotin compounds in tissues of the rock shell, Thais clavigera. Mar. Environ. Res. 76, 5662. CrossRefGoogle ScholarPubMed
Idziorek, T., Estaquier, J., De Bels, F., Ameisen, J.C., 1995, YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Meth. 185, 249258. CrossRefGoogle ScholarPubMed
Inoue, S., Oshima, Y., Nagai, K., Yamamoto, T., Go, J., Kai, N., Honjo, T., 2004, Effect of maternal exposure to tributyltin on reproduction of the pearl oyster (Pinctada fucata martensii). Environ. Toxicol. Chem. 23, 12761281. CrossRefGoogle Scholar
Inoue, S., Abe, S., Oshima, Y., Kai, N., Honjo, T., 2006a, Tributyltin contamination of bivalves in coastal areas around northern Kyushu, Japan. Environ. Toxicol. 21, 244249. CrossRefGoogle ScholarPubMed
Inoue, S., Oshima, Y., Usuki, H., Hamaguchi, M., Hanamura, Y., Kai, N., Shimasaki, Y, Honjo, T., 2006b, Effects of tributyltin maternal and/or waterborne exposure on the embryonic development of the Manila clam, Ruditapes philippinarum. Chemosphere 63, 881888. CrossRefGoogle ScholarPubMed
Inoue, S., Oshima, Y., Usuki, H., Hamaguchi, M., Hanamura, Y., Kai, N., Shimasaki, Y., Honjo, T., 2007, Effect of tributyltin on veliger larvae of the Manila clam, Ruditapes philippinarum. Chemosphere 66, 13531357. CrossRefGoogle Scholar
Janer, G., Lyssimachou, A., Bachmann, J., Oehlmann, J., Schulte-Oehlmann, U., Porte, C., 2006, Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis : the effect of xenoandrogenic compounds. Steroids 71, 435444. CrossRefGoogle ScholarPubMed
Jurkiewicz, M., Averill-Bates, D.A., Marion, M., Denizeau, F., 2004, Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim. Biophys. Acta 1693, 1527. CrossRefGoogle ScholarPubMed
Kodavanti, P.R., Cameron, J.A., Yallapragada, P.R., Vig, P.J., Desaiah, D., 1991, Inhibition of Ca2+ transport associated with cAMP-dependent protein phosphorylation in rat cardiac sarcoplasmic reticulum by triorganotins. Arch. Toxicol. 65, 311317. CrossRefGoogle Scholar
LeDeuff, R.M., Lipart, C., Renaud, R., 1994, Primary culture of Pacific oyster, Crassostrea gigas, heart cells. J. Tissue Cult. Meth. 16, 6772. CrossRefGoogle Scholar
Le Marrec-Croq, F., Fritayre, P., Chesné, C., Guilouzo, A., Dorange, G., 1998, Cryopreservation of Pecten maximus heart cells. Cryobiology 37, 200206. CrossRefGoogle ScholarPubMed
Le Marrec-Croq, F., Glaise, D., Guguen-Guillouzo, C., Chesne, C., Guillouzo, A., Boulo, V., Dorange, G., 1999, Primary cultures of heart cells from the scallop Pecten maximus (Mollusca-Bivalvia). In Vitro Cell. Dev. Biol. Anim. 35, 289295. CrossRefGoogle Scholar
Mamindy-Pajany, Y., Hamer, B., Romeo, M., Geret, F., Galgani, F., Durmisi, E., Hurel, C., Marmier, N., 2011, The toxicity of composted sediments from Mediterranean ports evaluated by several bioassays. Chemosphere 82, 362369. CrossRefGoogle ScholarPubMed
Mizuhashi, S., Ikegaya, Y., Matsuki, N., 2000, Cytotoxicity of tributyltin in rat hippocampal slice cultures. Neurosci. Res. 38, 3542. CrossRefGoogle ScholarPubMed
Mosman, T., 1983, Rapid colorimetric assay for cellular growth and survivals : Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 5563. CrossRefGoogle Scholar
Nakatsu, Y., Kotake, Y., Ohta, S., 2006, Tributyltin-induced cell death is mediated by calpain in PC12 cells. Neurotoxicology 27, 587593. CrossRefGoogle ScholarPubMed
Nakatsu, Y., Kotake, Y., Ohta, S., 2007, Concentration dependence of the mechanisms of tributyltin-induced apoptosis. Toxicol. Sci. 97, 438447. CrossRefGoogle ScholarPubMed
Nakatsu, Y., Kotake, Y., Hino, A., Ohta, S., 2008, Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicol. Appl. Pharmacol. 230, 358363. CrossRefGoogle ScholarPubMed
Ohji, M., Arai, T., Miyazaki, N., 2005, Acute toxicity of tributyltin to the Caprellidea (Crustacea : Amphipoda). Mar. Environ. Res. 59, 197201. CrossRefGoogle Scholar
Ortiz, A., Teruel, J.A., Aranda, F.J., 2005, Effect of triorganotin compounds on membrane permeability. Biochim. Biophys. Acta 1420, 137142. CrossRefGoogle Scholar
OSPAR-Convention, 2004, Provisional JAMP Assessment Criteria for TBT – Specific Biological Effects. r. 004–15.
Oyama, Y., Ueha, T., Hayashi, A., Chikahisa, L., 1994, Effect of tri-n-butyltin on intracellular Ca2+ concentration of mouse thymocytes under Ca(2 + )-free condition. Eur. J. Pharmacol. 270, 137142. Google ScholarPubMed
Pelletier, E., Sargian, P., Payet, J., Demers, S., 2006, Ecotoxicological effects of combined UVB and organic contaminants in coastal waters : A review. Photochem. Photobiol. 82, 981993. CrossRefGoogle ScholarPubMed
Pennec, J.P., Gallet, M., Gioux, M., Dorange, G., 2002, Cell culture of bivalves : tool for the study of the effects of environmental stressors. Cell. Mol. Biol. 48, 351358. Google ScholarPubMed
Pennec, J.P., Talarmin, H., Droguet, M., Giroux-Metges, M.A., Gioux, M., Dorange, G., 2004, Characterization of the voltage-activated currents in cultured atrial myocytes isolated from the heart of the common oyster Crassostrea gigas. J. Exp. Biol. 207, 39353944. CrossRefGoogle ScholarPubMed
Perina, F.C., Abessa, D.M., Pinho, G.L., Fillmann, G., 2011, Comparative toxicity of antifouling compounds on the development of sea urchin. Ecotoxycology 20, 18701880. CrossRefGoogle ScholarPubMed
Pickwell, G.V., Steinert, S.A., 1988, Accumulation and effects of organotin compounds in oysters and mussels : correlation with serum biochemical and cytological factors and tissue burdens. Mar. Environ. Res. 24, 215218. CrossRefGoogle Scholar
Pinkney, A.E., Wright, D.A., Jepson, M.A., Towle, D.W., 1989, Effects of tributyltin compounds on ionic regulation and gill ATPase activity in estuarine fish. Comp. Biochem. Physiol. C, 92, 125129. Google Scholar
Raffray, M., Cohen, G.M., 1993, Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch. Toxicol. 67, 231236. CrossRefGoogle Scholar
Roberts, M.H., 1987, Acute toxicity of tributyltin chloride to embryos and larvae of two bivalve molluscs, Crassostrea virginica and Mercenaria mercenaria. Bull. Environ. Contam. Toxicol. 39, 10121019. CrossRefGoogle ScholarPubMed
Stridh, H., Fava, E., Single, B., Nicotera, P., Orrenius, S., Leist, M., 1999, Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production. Chem. Res. Toxicol. 12, 874882. CrossRefGoogle Scholar
Talarmin, H., and Droguet, M., Pennec, J.P., Schröder, H.C., Müller, W.E.G, Dorange, G., 2008, Effects of a phycotoxin, the okadaïc acid, on oyster heart cell survival. Toxicol. Environ. Chem. 90, 153168. CrossRefGoogle Scholar
Tong, S.L., Pang, F.Y., Phang, S.M., Lai, H.C., 1996, Tributyltin distribution in the coastal environment of Peninsular Malaysia. Environ. Pollut. 91, 209216. CrossRefGoogle ScholarPubMed
Tsunoda, M., Aizawa, Y., Konno, N., Kimura, K., Sugita-Konishi, Y., 2006, Subacute administration of tributyltin chloride modulates neurotransmitters and their metabolites in discrete brain regions of maternal mice and their F1 offspring. Toxicol. Indust. Health 22, 1525. CrossRefGoogle Scholar
Unger, M.A., MacIntyre, W.G., Huggett, R.J., 1988, Sorption behavior of tributyltin on estuarine and freshwater sediments. Environ. Toxicol. Chem. 7, 907915. CrossRefGoogle Scholar
Viglino, L., Pelletier, E., 2006, Butylétains dans les eaux du fjord du Saguenay (Canada) : menace pour l’écosystème d’un milieu semi-fermé? Rev. Sci. Eau 19, 1122. Google Scholar
Waldock, M.J., Thain, J.E., 1983, Shell thickening in Crassostrea gigas : organotin antifouling or sediment induced. Mar. Pollut. Bull. 14, 411415. CrossRefGoogle Scholar
Whalen, M.M., Loganathan, B.G., Yamashita, N., 2000, Effect of in vitro exposure to selected endocrine disrupting chemicals on human natural killer (NK) cell function. Organohalogen Comp. 49, 259261. Google Scholar
Zhang, J., Zuo, Z., Wang, Y., Yu, A., Chen, Y., Wang, C., 2011, Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway. Chemosphere 82, 437442. CrossRefGoogle ScholarPubMed