Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T06:08:24.888Z Has data issue: false hasContentIssue false

Impact of trophic interactions on production functions and on the ecosystem response to fishing: A simulation approach

Published online by Cambridge University Press:  15 March 2005

Emmanuel Chassot
Agrocampus Rennes, Département Halieutique, Unité Propre de Recherche (UPR) Méthode d'Étude des Systèmes Halieutiques (MESH), 65 rue de Saint Brieuc, CS 84215, 35042 Rennes Cedex, France
Didier Gascuel
Agrocampus Rennes, Département Halieutique, Unité Propre de Recherche (UPR) Méthode d'Étude des Systèmes Halieutiques (MESH), 65 rue de Saint Brieuc, CS 84215, 35042 Rennes Cedex, France
Audrey Colomb
Agrocampus Rennes, Département Halieutique, Unité Propre de Recherche (UPR) Méthode d'Étude des Systèmes Halieutiques (MESH), 65 rue de Saint Brieuc, CS 84215, 35042 Rennes Cedex, France Institut de Recherche pour le Développement (IRD), Centre de Recherche Halieutique Méditerranéenne et Tropicale (CRH), Av. Jean Monnet, BP 171, 34203 Sète Cedex, France
Get access


A simulation model is developed to analyse the variability of production functions in an exploited virtual ecosystem. We assume that a complex food web can be represented by a set of trophic components interacting through predation. Each component has a set of recruitment, growth, and survival models, a catch level and trophic preference function. Prey are consumed according to their abundance and predators' trophic preference functions are estimated in a pristine system. A parameter for the food consumption per unit biomass describes foraging for each trophic component. The FishBase database is used to parameterise some of the major processes in a generic model. A commercial fishery targets mostly high trophic levels through a set selectivity function. Some key ecosystem features are assessed in simulations: the intensity of top-down and of bottom-up controls, and the degree of trophic opportunism. Top-down control is the regulation of lower food-web components by one or several upper-levels predators. Bottom-up control is the regulation of trophic components by their prey. Results show that biological production functions are highly dependent on predation parameters and vary differently according to trophic level. Fishing activity modifies the biomass distribution between components and strongly affects higher trophic levels more sensitive to exploitation. Trophic dynamics within the system are altered through the rates of predation mortality. In systems where predation mortality is high, top-down control dominates and fishing affects all food web components. These “fishing-controlled” systems display compensatory mechanisms through a released predation control. We also show that systems where productivity is dependent on prey abundance are more “environment-controlled” and seem more sensitive to overexploitation, particularly the higher trophic levels. Trophic opportunism tends to dampen the propagation of top-down or bottom-up controls through the food web and thus stabilizes the ecosystem. Trophic relationships are therefore essential ecosystems characteristics that determine production and response to exploitation. Their routine analysis is a key part of the ecosystem approach.

Research Article
© EDP Sciences, IFREMER, IRD, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Andersen, K.P., Ursin, E., 1977, A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Meddelelser Fra Danmarks Fiskeri- of Havundersogelser N.S. 7, 319-435.
Bax, N.J., 1998, The significance and prediction of predation in marine fisheries. ICES J. Mar. Sci. 55, 997-1030. CrossRef
Beverton R.J.H., Holt S.J., 1957, On the dynamics of exploited fish populations. Chapman and Hall, London.
Briand, F., Cohen, J.E., 1987, Environmental correlates of food chain length. Science 238, 956-960. CrossRef
Chassot E., Gascuel D., 2003, Estimation of the impact of trophic interactions on biological production functions in an ecosystem. ICES CM 2003/N:11.
Christensen, V., Pauly, D., 1992, ECOPATH II-a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61, 169-185. CrossRef
Christensen, V., Pauly, D., 2004, Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109-139. CrossRef
Cohen J.E., 1978, Food webs and niche space. Monographs in Population Biology no. 11. Princeton University Press, USA.
Cox, S.P., Essington, T.E., Kitchell, J.F., Martell, S.J.D., Walters, C.J., Boggs, C., Kaplan, I., 2002, Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952-1998. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Can. J. Fish. Aquat. Sci. 59, 1736-1747.
Cury, P., Bakun, A., Crawford, J.M., Jarre, A., Quiñones, R.A., Shannon, L.J., Verheye, H.M., 2000, Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603-618. CrossRef
Cury, P., Roy, C., 1989, Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670-680. CrossRef
Cury P., Shannon L., Shin Y.-J., 2003, The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M., Valdimarsson G. (Eds.), Responsible fisheries in the marine ecosystem. Fishery Industries Division, FAO, Rome, Italy.
Cushing D.H., 1982, Climate and Fisheries. Academic Press, London.
Essington, T.E., Kitchell, J.F., Walters, C.J., 2001, The von Bertalanffy growth function, bioenergetics, and the consumption rates of fish. Can. J. Fish. Aquat. Sci. 58, 2129-2138. CrossRef
Froese R., Pauly D., 2000, FISHBASE 2000, Concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines.
Gascuel D., 2002, Un modèle écosystémique structuré par niveau trophique : approche théorique de l'impact de la pêche sur la biomasse, la production halieutique et la dynamique des écosystèmes marins exploités. In: A. Biseau, A. Forest, D. Gascuel, F. Laloë (Eds.), Halieutique : complexité et décision. Ifremer, Lorient, France.
Gascuel D., Bozec Y.-M., Chassot E., Colomb A., Laurans M., 2005, Trophic spectra: theory and practical application. ICES J. Mar. Sci. 62, in press.
Gislason, H., 1999, Single and multispecies reference points for Baltic fish stocks. ICES J. Mar. Sci. 56, 571-583. CrossRef
Hall S.J., 1999, The effects of fishing on marine ecosystems and communities. Blackwell Science, Great Britain.
Harvey, C.J., Cox, S.P., Essington, T.E., Hansson, S., Kitchell, J.F., 2003, An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES J. Mar. Sci. 60, 939-950. CrossRef
Hollowed, A.B., Bax, N., Beamish, R., Collie, J., Fogarty, M., Livingston, P., Pope, J., Rice, J.C., 2000, Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES J. Mar. Sci. 57, 707-719.
Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A., Hughes, T.P., Kidwell, S., Lange, C.B., Lenihan, H.S., Pandolfi, J.M., Peterson, C.H., Steneck, R.S., Tegner, M.J., Warner, R.R., 2001, Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science 293, 629-638. CrossRef
Jennings, S., Kaiser, M.J., 1998, The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34, 203-302.
Jennings, S., Pinnegar, J.K., Polunin, N.V.C., Boon, T.W., 2001, Weak cross-species relationships between body-size and trophic level belie powerful size-based trophic structuring in fish communities. J. Anim. Ecol. 70, 934-944. CrossRef
Jennings, S., Reynolds, J.D., Mills, S.C., 1998, Life history correlates of responses to fisheries exploitation. Proc. R. Soc. Lond. 265, 333-339. CrossRef
Kerr, S.R., 1974, Theory of Size Distribution in Ecological Communities. J. Fish. Res. Board Can. 31, 1859-1862. CrossRef
Kerr, S.R., Ryder, R.A., 1989, Current Approaches to Multispecies Analyses of Marine Fisheries. Can. J. Fish. Aquat. Sci. 46, 528-534. CrossRef
Kooijman S.A.L.M., 2000, Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, UK.
Laurans, M., Gascuel, D., Chassot, E., Thiam, D., 2004, Changes in the trophic structure of fish demersal communities in West Africa. Aquat. Living Resour. 17, 163-173. CrossRef
Lotka A.J., 1924, Elements of Physical Biology. Williams and Wilkins Co.
Martinez, N.D., 1991, Artifacts or attributes? Effects of resolution on the little rock lake food web. Ecol. Monogr. 61, 367-392. CrossRef
Martinez N.D., 1995, Unifying ecological subdisciplines with ecosystem food webs. Linking Species and Ecosystems. Chapman & Hall, London, pp. 166-177.
Maury, O., Gascuel, D., 1999, SHADYS (“simulateur halieutique de dynamiques spatiales”), a GIS based numerical model of fisheries. Example application: the study of a marine protected area. Aquat. Living Resour. 12, 77-88.
May R.M., 1976, Theoretical Ecology. Principles and Applications. Blackwell, London.
May, R.M., Beddington, J.R., Clark, C.W., Holt, S.J., Laws, R.M., 1979, Management of multispecies fisheries. Science 205, 267-277. CrossRef
McCann, K.S., Hastings, A., Huxel, G.R., 1998, Weak trophic interactions and the balance of nature. Nature 395, 794-798. CrossRef
Micheli, F., 1999, Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285, 1396-1398. CrossRef
Pace, M.L., Cole, J.J., Carpenter, S.R., Kitchell, J.F., 1999, Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483-488. CrossRef
Pahl-Wostl, C., 1997, Dynamic structure of a food web model: Comparison with a food chain model. Ecol. Model. 100, 103-123. CrossRef
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F.J., 1998, Fishing down marine food webs. Science 279, 860-863. CrossRef
Pinnegar, J.K., Jennings, S., O'Brien, C.M., Polunin, N.V.C., 2002, Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J. Appl. Ecol. 39, 377-390. CrossRef
Pinnegar, J.K., Polunin, N.V.C., Francour, P., Badalamenti, F., Chemello, R., Harmelin-Vivien, M.-L., Hereu, B., Milazzo, M., Zabala, M., D'Anna, G., Pipitone, C., 2000, Trophic cascades in benthic marine ecosystems: Lessons for fisheries and protected-area management. Environ. Conserv. 27, 179-200. CrossRef
Platt, T., Fuentes-Yaco, C., Frank, K.T., 2003, Spring algal bloom and larval fish survival. Nature 423, 398-399. CrossRef
Polis, G.A., Myers, C.A., Holt, R.D., 1989, The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297-330. CrossRef
Ryther, J.H., 1969, Photosynthesis and fish production in the sea. Science 166, 72-76. CrossRef
Shin, Y.-J., Cury, P., 2001, Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquat. Living Resour. 14, 65-80. CrossRef
Vander Zanden, M.J., Cabana, G., Rasmussen, J.B., 1997, Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios ( $\delta ^{5}$ N) and literature dietary data. Ecology 54, 1142-1158.
Volterra, V., 1926, Fluctuations in the abundance of a species considered mathematically. Nature 118, 558-560. CrossRef
von Bertalanffy, , 1938, A quantitative theory of organic growth (Inquiries on growth Laws II). H. Biol. 10, 181-213.
Whipple, S.J., Link, J.S., Garrison, L.P., Fogarty, M.J., 2000, Models of predation and fishing mortality in aquatic ecosystems. Fish Fish. 1, 22-40. CrossRef
Williams, R.J., Martinez, N.D., 2000, Simple rules yield complex food webs. Nature 404, 180-183. CrossRef
Worm, B., Myers, R.A., 2003, Meta-analysis of cod-shrimp interaction reveals top-down control in oceanic food webs. Ecology 84, 162-173. CrossRef