## REFERENCES

1Wand, M.P.; Jones, M.C.: Kernel Smoothing. Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1995.

2Gonzalez, R.; Woods, J.: Digital Image Processing, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 2008.

3Zhang, M.; Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image. Process., 17 (12) (2008), 2324–2333.

4Honghong, P.; Rao, R.; Dianat, S.A.: Multispectral image denoising with optimized vector bilateral filter. IEEE Trans. Image Process., 23 (1) (2014), 264–273.

5Buades, A.; Coll, B.; Morel, J.: A non-local algorithm for image denoising. IEEE Computer Vision and Pattern Recognition (CVPR), June (2005), 60–65.

6Awate, S.P.; Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal., Mach. Intell., 28 (3) (2006), 364–376.

7Kervrann, C.; Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process., 15 (10) (2006), 2866–2878.

8Chatterjee, P.; Milanfar, P.: Patch-based near-optimal denoising. IEEE Trans. Image Process., 21 (4) (2011), 1635–1649.

9Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16 (8) (2007), 2080–2095.

10Milanfar, P.: A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal. Process. Mag., 30 (1) (2013), 106–128.

11Liu, G.; Zhong, H.; Jiao, L.: Comparing noisy patches for image denoising: a double noise similarity model. IEEE Trans. Image. Process., 24 (3) (2015), 862–872.

12Xu, G.; Jiang, S.: Nonlocal means denoising using a content-based searching region. Int. Congress on Image and Signal Processing (CISP), October 2015, 293–297.

13Ghosh, S.; Mandal, A.K.; Chaudhury, K.N.: Pruned non-local means. IET. Image. Process., 11 (5) (2017), 317–323.

14Chan, S.H.; Zickler, T.; Lu, Y.M.: Monte Carlo non-local means: random sampling for large-scale image filtering. IEEE Trans. Image. Process., 23 (8) (2014), 3711–3725.

15Xue, B.; Huang, Y.; Yang, J.; Shi, L.; Zhan, Y.; Cao, X.: Fast nonlocal remote sensing image denoising using cosine integral images. IEEE Geosci. Remote. Sens. Lett., 10 (6) (2013), 1309–1313.

16Huang, F. et al. : A parallel nonlocal means algorithm for remote sensing image denoising on an intel Xeon Phi platform. IEEE Access., 5 (2017), 8559–8567.

17Mohan, M.R.M.; Sheeba, V.S.: A Novel Method of Medical Image Denoising Using Bilateral and NLm Filtering. Int. Conf. on Advances in Computing and Communications (ICACC), pp.186–191, August 2013.

18Kim, M.; Park, D.; Han, D.K.; Hanseok, Ko: A novel approach for denoising and enhancement of extremely low-light video. IEEE Trans. Consum. Electron., 61 (1) (2015), 72–80.

19Lebrun, M.; Buades, A.; Morel, J.: A nonlocal bayesian image denoising algorithm. SIAM. J. Imaging. Sci., 6 (3) (2013), 1665–1688.

20Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B.: Bayesian data analysis, vol. 2, Chapman & Hall/CRC, Boca Raton FL, USA, 2014.

21Molina, R.: On the hierarchical bayesian approach to image restoration applications to astronomical images. IEEE Trans. Pattern. Anal. Mach. Intell., 16 (11) (1994), 1122–1128.

22Molina, R.; Katsaggelos, A.K.; Mateos, J.: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans. Image. Process., 8 (2) (1999), 231–246.

23Dobigeon, N.; Tourneret, J.-Y.; Chang, C.-I.: Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery. IEEE Trans. Signal. Process., 56 (7) (2008), 2684–2695.

24Orieux, F.; Giovannelli, J.; Rodet, T.: Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution. J. Opt. Soc. Am. A, 27 (7) (2010), 1593–1607.

25Aguerrebere, C.; Almansa, A.; Delon, J.; Gousseau, Y.; Muse, P.: A Bayesian hyperprior approach for joint image denoising and interpolation with an application to HDR imaging. IEEE Trans. Comput. Imaging., 3 (4) (2017), 633–646.

26Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J.: Photographic tone reproduction for digital images, in journal ACM transactions on graphics - Proc. SIGGRAPH, 21 (3) (2002), 267–276.

27Mai, Z.; Mansour, H.; Mantiuk, R.; Nasiopoulos, P.; Ward, R.; Heidrich, W.: Optimizing a tone curve for backward-compatible high dynamic range image and video compression. IEEE Trans. Image. Process., 20 (6) (2011), 1558–1571.

28Koz, A.; Dufaux, F.: Optimized Tone Mapping with LDR Image Quality Constraint for Backward-Compatible High Dynamic Range Image and Video Coding. IEEE Int. Conf. Image Processing (ICIP), September 2013, 1762–1766.

29Iwahashi, M.; Kiya, H.: Noise Bias Compensation of Tone Mapped Noisy Image. IEEE Int. Conf. Image Processing (ICIP), no. TEC-P6.3, October 2014.

30Iwahashi, M.; Hamzah, F.A.B.; Yoshida, T.; Hitoshi, Kiya: Noise bias compensation based on Bayesian inference for tone mapped noisy image. Asia-Pacific Signal and Information Processing Association Annual Summit and Conf. (APSIPA), December 2015.

31Liu, C.; Freeman, W.T.; Szeliski, R.; Kang, S.B.: Noise estimation from a single image. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 901-908, 2006.

32Hou, J.; Xiong, C.: An Efficient Locally Adaptive Wavelet Denoising Method Based on Bayesian MAP Estimation. 2006 Int. Conf. on Communications, Circuits and Systems, June 2006.

33Dan, Z.; Chen, X.; Gan, H.; Gao, C.: Locally Adaptive Shearlet Denoising Based on Bayesian MAP Estimate. 2011 Sixth Int. Conf. on Image and Graphics, August 2011.

34Sadreazami, H.; Ahmad, M.O.; Swamy, M.N.S.: Color image denoising using multivariate cauchy PDF in the contourlet domain. 2016 IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE), May 2016.

35González, A.; Fang, Z.; Socarras, Y.; Serrat, J.; Vázquez, D.; López, A.M.: Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison. Sens., 16 (6) (2016), 1–11.