Skip to main content Accessibility help
×
Home

Grayscale-based block scrambling image encryption using YCbCr color space for encryption-then-compression systems

  • Warit Sirichotedumrong (a1) and Hitoshi Kiya (a1)

Abstract

A novel grayscale-based block scrambling image encryption scheme is presented not only to enhance security, but also to improve the compression performance for Encryption-then-Compression (EtC) systems with JPEG compression, which are used to securely transmit images through an untrusted channel provider. The proposed scheme enables the use of a smaller block size and a larger number of blocks than the color-based image encryption scheme. Images encrypted using the proposed scheme include less color information due to the use of grayscale images even when the original image has three color channels. These features enhance security against various attacks, such as jigsaw puzzle solver and brute-force attacks. Moreover, generating the grayscale-based images from a full-color image in YCbCr color space allows the use of color sub-sampling operation, which can provide the higher compression performance than the conventional grayscale-based encryption scheme, although the encrypted images have no color information. In an experiment, encrypted images were uploaded to and then downloaded from Twitter and Facebook, and the results demonstrated that the proposed scheme is effective for EtC systems and enhances the compression performance, while maintaining the security against brute-force and jigsaw puzzle solver attacks.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Grayscale-based block scrambling image encryption using YCbCr color space for encryption-then-compression systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Grayscale-based block scrambling image encryption using YCbCr color space for encryption-then-compression systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Grayscale-based block scrambling image encryption using YCbCr color space for encryption-then-compression systems
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Corresponding author: Hitoshi Kiya Email: kiya@tmu.ac.jp

References

Hide All
1Huang, C.T. et al. : Survey on securing data storage in the cloud. APSIPA Trans. Signal Inf. Process., 3 (e7) (2014).
2Lagendijk, R.; Erkin, Z.; Barni, M.: Encrypted signal processing for privacy protection: conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal. Process. Mag., 30 (1) (2013), 82105.
3Zhou, J.; Liu, X.; Au, O.C.; Tang, Y.Y.: Designing an efficient image encryption-then-compression system via prediction error clustering and random permutation. IEEE Trans. Inf. Forensics Security, 9 (1) (2014), 3950.
4Ra, M.-R.; Govindan, R.; Ortega, A.: P3: toward privacy-preserving photo sharing, in Proc. of the 10th USENIX Conf. on Networked Systems Design and Implementation, 2013, 515528.
5Zeng, W.; Lei, S.: Efficient frequency domain selective scrambling of digital video. IEEE Trans. Multimedia, 5 (1) (2003), 118129.
6Ito, I.; Kiya, H.: A new class of image registration for guaranteeing secure data management, in IEEE Int. Conf. on Image Processing (ICIP), 2008, 269272.
7Kiya, H.; Ito, I.: Image matching between scrambled images for secure data management, in 16th European Signal Processing Conf. (EUSIPCO), 2008, 15.
8Ito, I.; Kiya, H.: One-time key based phase scrambling for phaseonly correlation between visually protected images. EURASIP J. Inf. Security, 2009 (841045) (2010), 111.
9Tang, Z.; Zhang, X.; Lan, W.: Efficient image encryption with block shuffling and chaotic map. Multimedia Tools Appl., 74 (15) (2015), 54295448.
10Li, C.; Lin, D.; , J.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Trans. Multimedia, 24 (3) (2017), 6471.
11Zhang, Y.; Xu, B.; Zhou, N.: A novel image compression-encryption hybrid algorithm based on the analysis sparse representation. Optical Commun., 392 (2017), 223233.
12Erkin, Z. et al. : Protection and retrieval of encrypted multimedia content: when cryptography meets signal processing. EURASIP J. Inf. Security, 2007 (78943) (2007), 120.
13Nimbokar, K.G.; Sarode, M.V.; Ghonge, M.M.: A survey based on designing an efficient image encryption-then-compression system, in IJCA Proc. on National Level Technical Conf. X-PLORE 2014, vol, XPLORE2014, 2014, 68.
14Liu, T.Y.; Lin, K.J.; Wu, H.C.: Ecg data encryption then compression using singular value decomposition. IEEE J. Biomed. Health Inform., 22 (3) (2018), 707713.
15Watanabe, O.; Uchida, A.; Fukuhara, T.; Kiya, H.: An encryption-then-compression system for jpeg 2000 standard, in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2015, 12261230.
16Kurihara, K.; Shiota, S.; Kiya, H.: An encryption-then-compression system for jpeg standard, in Picture Coding Symp. (PCS), 2015, 119123.
17Kurihara, K.; Kikuchi, M.; Imaizumi, S.; Shiota, S.; Kiya, H.: An encryption-then-compression system for jpeg/motion jpeg standard. IEICE Trans. Fund. Electron. Comm. Comput. Sci., 98 (11) (2015), 22382245.
18Kurihara, K.; Watanabe, O.; Kiya, H.: An encryption-then-compression system for jpeg xr standard, in IEEE Int. Symp. Broadband Multimedia Systems and Broadcast (BMSB), 2016, 15.
19Kurihara, K.; Imaizumi, S.; Shiota, S.; Kiya, H.: An encryption-then-compression system for lossless image compression standards. IEICE Trans. Inf. Syst., E100-D (1) (2017), 5256.
20Sirichotedumrong, W.; Chuman, T.; Imaizumi, S.; Kiya, H.: Grayscale-based block scrambling image encryption for social network services, in IEEE Int. Conf. on Multimedia and Expo (ICME), 2018, 1–6.
21Chuman, T.; Sirichotedumrong, W.; Kiya, H.: Encryption-then-compression systems using grayscale-based image encryption for jpeg images, IEEE Trans. Inf. Forensics Security, https://doi.org/10.1109/TIFS.2018.2881677.
22Liu, W.; Zeng, W.; Dong, L.; Yao, Q.: Efficient compression of encrypted grayscale images. IEEE Trans. Image Process., 19 (4) (2010), 10971102.
23Hu, R.; Li, X.; Yang, B.: A new lossy compression scheme for encrypted gray-scale images, in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2014, 73877390.
24Johnson, M.; Ishwar, P.; Prabhakaran, V.; Schonberg, D.; Ramchandran, K.: On compressing encrypted data. IEEE Trans. Signal Process., 52 (10) (2004), 29923006.
25Gaata, M.T.; Hantoosh, F.F.: An efficient image encryption technique using chaotic logistic map and rc4 stream cipher. Int. J. Mod. Trends Eng. Res., 3 (9) (2016), 213218.
26Wu, Y.; Noonan, J.P.; Yang, G.; Jin, H.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging., 21 (1) (2012), 013014.
27Chuman, T.; Kurihara, K.; Kiya, H.: On the security of block scrambling-based etc systems against jigsaw puzzle solver attacks, in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2017, 21572161.
28Chuman, T.; Kurihara, K.; Kiya, H.: Security evaluation for block scrambling-based etc systems against extended jigsaw puzzle solver attacks, in IEEE Int. Conf. on Multimedia and Expo (ICME), 2017, 229234.
29Chuman, T.; Kurihara, K.; Kiya, H.: On the security of block scrambling-based etc systems against extended jigsaw puzzle solver attacks. IEICE Trans. Inf. Syst., E101-D (1) (2018), 3744.
30Chuman, T.; Kiya, H.: On the security of block scrambling-based image encryption including jpeg distorsion against jigsaw puzzle solver attacks, in IEEE Int. Workshop on Signal Design and its Applications in Communications (IWSDA), 2017, 6468.
31Information technology - digital compression and coding of continuous-tone still images: JPEG file interchange format (JFIF), Recommendation ITU-T T.871, 2012.
32Independent jpeg group, http://www.ijg.org/.
33Yang, E.H.; Wang, L.: Joint optimization of run-length coding, huffman coding, and quantization table with complete baseline jpeg decoder compatibility. IEEE Trans. Image Process., 18 (1) (2009), 6374.
34Schaefer, G.; Stich, M.: UCID: An uncompressed color image database, in Storage and Retrieval Methods and Applications for Multimedia 2004, 2004, 472480.
35Chuman, T.; Iida, K.; Kiya, H.: Image manipulation on social media for encryption-then-compression systems, in 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conf. (APSIPA ASC), 2017, 858863.
36Larson, E.C.; Chandler, D.M.: Most apparent distortion: full reference image quality assessment and the role of strategy. J. Electron. Imaging., 19 (2010), 011006-1011006-21.
37Gallagher, A.: Jigsaw puzzles with pieces of unknown orientation, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, 382389.
38Cho, T.; Avidan, S.; Freeman, W.: A probabilistic image jigsaw puzzle solver, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010, 183190.
39Nemoto, H.; Hanhart, P.; Korshunov, P.; Ebrahimi, T.: Ultra-eye: Uhd and hd images eye tracking dataset, in Sixth Int. Workshop on Quality of Multimedia Experience (QoMEX), 2014, 3940.

Keywords

Related content

Powered by UNSILO

Grayscale-based block scrambling image encryption using YCbCr color space for encryption-then-compression systems

  • Warit Sirichotedumrong (a1) and Hitoshi Kiya (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.