Skip to main content Accessibility help
×
×
Home

Capture-to-display delay measurement for visual communication applications

  • Haoming Chen (a1), Chao Wei (a2), Mingli Song (a2), Ming-Ting Sun (a1) and Kevin Lau (a3)...

Abstract

We propose a method to measure the capture-to-display delay (CDD) of a visual communication application. The method does not require modifications to the existing system, nor require the encoder and decoder clocks be synchronized. Furthermore, we propose a solution to solve the multiple-overlapped-timestamp problem due to the exposure time of the camera. We analyze the measurement error, and implement the method in software to measure the CDD of a cellphone video chat application over various types of networks. Experiments confirm the effectiveness of our proposed method.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Capture-to-display delay measurement for visual communication applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Capture-to-display delay measurement for visual communication applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Capture-to-display delay measurement for visual communication applications
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Corresponding author:H. Chen Email: eehmchen@uw.edu

References

Hide All
[1]Reibman, A.R.; Haskell, B.G.: Constraints on variable bit-rate video for ATM networks. IEEE Trans. Circuits Syst. Video Technol., 2 (4) (1992), 361372.
[2]Boyaci, O.; Forte, A.; Baset, S.A.; Schulzrinne, H.: Delay: a tool to measure capture-to-display latency and frame rate, in ISM 2009 – 11th IEEE Int. Symp. on Multimedia, 2009.
[3]Kryczka, A.; Arefin, A.; Nahrstedt, K.: AvCloak: a tool for black box latency measurements in video conferencing applications, in 2013 IEEE Int. Symp. on Multimedia, 2013, 271–278.
[4]Jansen, J.; Bulterman, D.C.A.: User-centric video delay measurements, in Proc. 23rd ACM Workshop on Network and Operating Systems Support for Digital Audio and Video – NOSSDAV ‘13, 2013, 37–42.
[5]Xu, Y.; Yu, C.; Li, J.; Liu, Y.: Video telephony for end-consumers: measurement study of Google + , iChat, and skype. IEEE/ACM Trans. Netw., 22 (3) (2014), 826839.
[6]Ohbuchi, E.; Hanaizumi, H.; Hock, L.A.: Barcode readers using the camera device in mobile phones, in Int. Conf. on Cyberworlds, CW, 2004.
[7]Ray, S.F.; Axford, W.; Attridge, G.G.: The Manual of Photography: Photographic and Digital Imaging, Jacobson, R. E.. Focal Press, Oxford, UK, 2000.
[8]Bradley, D.M.; Gupta, R.C.: On the distribution of the sum of n non-identically distributed uniform random variables. Ann. Inst. Stat. Math., 54 (3) (2002), 689700.
[9]Sheldon, R.: A First Course in Probability, Pearson Education, New Jersey, USA, 2010.
[10]Bss QR Code Generator SDK. [Online]. Available: http://www.barcodesoftwaresolutions.com. [Accessed 12 February 2012].
[11]Otsu, N.: A threshold selection method from gray-level histograms. Automatica, 11 (1975), 2327.
[12]ZXing Barcode Reader. [Online]. Available: http://code.google.com/p/zxing. [Accessed 12 January 2012].
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed