## REFERENCES

13GPP: TR 38.913 Study on Scenarios and Requirements for Next Generation Access Technologies, 2017.

23GPP: RP-161214 Study on New Radio Access Technology, 2016.

33GPP: TR 38.802 Study on New Radio Access Technology Physical Layer Aspects, 2017.

4Gallager, R.G.: Low-Density Parity-Check Codes, M.I.T. Press, Cambridge, 1963.

5Shokrollahi, A.: New sequences of linear time erasure codes approaching channel capacity, in *Proc. IEEE Int. Symp. on Information Theory and its Applications*, Honolulu, Hawaii, November 1999.

6Oswald, P.; Shokrollahi, A.: Capacity-achieving sequences for the erasure channel. IEEE Trans. Information Theory, 48 (12) (2002), 3017–3028.

7Pfister, H.D.; Sason, I.; Urbanke, R.: Capacity-achieving ensembles for the binary erasure channel with bounded complexity. IEEE Trans. Information Theory, 51 (7) (2005), 2352–2379.

8Kudekar, S.; Richardson, T.; Urbanke, R.: Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans. Information Theory, 59 (12) (2013), 7761–7813.

9Hsu, C.; Anastasopoulos, A.: Capacity-achieving codes with bounded graphical complexity and maximum likelihood decoding. IEEE Trans. Information Theory, 56 (3) (2010), 992–1006.

10Fossorier, M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Information Theory, 50 (8) (2004), 1788–1793.

113GPP: R1-1706107 LDPC Decoding Latency According to Protomatrix, 2017.

12ArÄśkan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Information Theory, 55 (7) (2009), 3051–3073.

13Mori, R.; Tanaka, T.: Performance and construction of polar codes on symmetric binary-input memoryless channels, in *Proc. IEEE Int. Symp. on Information Theory*, Seoul, Korea, June 2009.

14Tal, I.; Vardy, A.: How to construct polar codes. IEEE Trans. Information Theory, 59 (10) (2013), 6562–6582.

15Mondelli, M.; Hassani, S.H.; Urbanke, R.: Unified scaling of polar codes: error exponent, scaling exponent, moderate deviations, and error floors. IEEE Trans. Information Theory, 62 (12) (2016), 6698–6712.

16Tal, I.; Vardy, A.: List decoding of polar codes. IEEE Trans. Information Theory, 61 (5) (2015), 2213–2226.

17Sarkis, G.; Giard, P.; Vardy, A.; Thibeault, C.; Gross, W.J.: Fast list decoders for polar codes. IEEE J. Sel. Areas Commun., 34 (2) (2016), 318–328.

18Hashemi, S.A.; Condo, C.; Gross, W.J.: Fast Simplified Successive-Cancellation List Decoding of polar Codes, in *Proc. IEEE Wireless Communications and Networking Conf. Workshops*, San Francisco, California, March 2017.

19Fan, Y. et al. : A low-latency list successive-cancellation decoding implementation for polar codes. IEEE J. Sel. Areas Commun., 34 (2) (2016), 303–317.

20Fang, Y.; Bi, G.; Guan, Y.; Lau, F.: A survey on protograph LDPC codes and their applications. IEEE Trans. On Commun. Surveys Tutorials, 17 (4) (2015), 1989–2016.

21Hocevar, D.E.: A reduced complexity decoder architecture via layered decoding of LDPC codes, in *Proc. IEEE Workshop on Signal Processing Systems*, Austin, Texas, October 2004.

223GPP: TS 38.212 NR; Multiplexing and channel coding, 2018.

23Lee, T.; Liu, S.: Banyan network nonblocking with respect to cyclic shifts. IEEE Electronics Lett., 27 (16) (1991), 1474–1476.

24Sason, I.; Urbanke, R.: Parity-check density versus performance of binary linear block codes over memoryless symmetric channels. IEEE Trans. Information Theory, 49 (7) (2003), 611–1635.

25Richardson, T.; Urbanke, R.: Modern Coding Theory, Cambridge University Press, Cambridge, 2008.

26Cai, Z.; Hao, J.; Tan, P.H.; Sun, S.; Chin, P.S.: Efficient encoding of IEEE 802.11n LDPC codes. IEEE Electronics Lett., 42 (25) (2006), 1471–1472.

27Caire, G.; Taricco, G.; Biglieri, E.: Bit-interleaved coded modulation. IEEE Trans. Information Theory, 44 (3) (1998), 927–946.

28Schurch, C.: A partial Order for the Synthesized Channels of a polar Code, in *Proc. IEEE Int. Symp. on Information Theory*, Barcelona, Spain, July 2016.

29He, G. et al. : *β*-expansion: A Theoretical Framework for Fast and Recursive Construction of polar Codes, CoRR, vol. abs/1704.05709, 2017, https://arxiv.org/abs/1704.05709. 30Hashemi, S.A.; Mondelli, M.; Hassani, S.H.; Urbanke, R.; Gross, W.J.: Partitioned List Decoding of polar Codes: Analysis and Improvement of Finite Length Performance, in *Proc. IEEE Global Communications Conf.*, Singapore, Singapore, December 2017.

31El-Khamy, M.; Lin, H.; Lee, J.; Kang, I.: Circular buffer rate-matched polar codes. IEEE Trans. On Commun., 66 (2) (2018), 493–506.

32Wang, R; Liu, R.: A novel puncturing scheme for polar codes. IEEE Commun. Lett., 18 (12) (2014), 2081–2084.

33Kschischang, F.R.; Frey, B.J.; Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Information Theory, 47 (2) (2001), 498–519.