Skip to main content Accessibility help
×
Home

Knowledge of letter sounds in children from England

  • Rebecca Treiman (a1), Susan E. Stothard (a2) and Margaret J. Snowling (a3)

Abstract

Learning the sounds of letters is important for learning to decode printed words and is a key component of phonics instruction. Some letter sounds are easier for children than others, and studies of these differences can shed light on the factors that influence children’s learning. The present study examined knowledge of the sounds of lowercase letters among children in England, where a government-mandated curriculum specifies the order in which letter sounds should be taught and where letters’ sounds are taught before the names. The participants were 355 children from Nursery (mean age 4 years, 4 months), Reception (mean age 5 years, 4 months), and Year 1 (6 years, 4 months) classes. When order of teaching was statistically controlled, children did better than expected on the initial letter of their first name and worse on visually confusable letters. Unlike the North American children in previous studies, they did not perform better on letters that had their sounds at the beginning of their names than on other types of letters. The sonority and the age of acquisition of the letter’s sound were also not influential. Implications for letter teaching, particularly for children at risk of literacy problems, are discussed.

Copyright

Corresponding author

*Corresponding author. E-mail: rtreiman@wustl.edu

References

Hide All
Bates, D., Mächler, M., Bolker, B. J., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01
Bowles, R. P., Pentimonti, J. M., Gerde, H. K., & Montroy, J. J. (2013). Item response analysis of uppercase and lowercase letter name knowledge. Journal of Psychoeducational Assessment, 32, 146156. doi:10.1177/0734282913490266
Dechant, E. V. (1970). Improving the teaching of reading. Englewood Cliffs, NJ: Prentice-Hall.
Dehaene, S. (2001). The massive impact of literacy on the brain and its consequences for education. In Battro, A. M., Dehaene, S., & Singer, W. J. (Eds.), Human neuroplasticity and education. Vatican City: Pontifical Academy of Sciences.
Department for Education and Skills. (2001). The national literacy strategy (No. DfES0500/2001). London: DfES Publications Centre.
Earle, G. A., & Sayeski, K. L. (2017). Systematic instruction in phoneme-grapheme correspondence for students with reading disabilities. Intervention in School and Clinic, 52, 262269. doi:10.1177/1053451216676798
Ellefson, M. R., Treiman, R., & Kessler, B. (2009). Learning to label letters by sounds or names: A comparison of England and the United States. Journal of Experimental Child Psychology, 102, 323341. doi:10.1016/j.jecp.2008.05.008
Evans, M. A., Bell, M., Shaw, D., Moretti, S., & Page, J. (2006). Letter names, letter sounds and phonological awareness: An examination of kindergarten children across letters and of letters across children. Reading and Writing, 19, 959989. doi:10.1007/s11145-006-9026-x
Fowler, C. A., Liberman, I. Y., & Shankweiler, D. (1977). On interpreting the error pattern in beginning reading. Language and Speech, 20, 162173. doi:10.1177/002383097702000208
Groff, P. (1972). A new sequence for teaching lower-case letters. Journal of Reading Behavior, 5, 297303.
Huang, F. L., & Invernizzi, M. A. (2014). Factors associated with lowercase alphabet naming in kindergarteners. Applied Psycholinguistics, 35, 943968. doi:10.1017/S0142716412000604
Huang, F. L., Tortorelli, L. S., & Invernizzi, M. A. (2014). An investigation of factors associated with letter-sound knowledge at kindergarten entry. Early Childhood Research Quarterly, 29, 182192. doi:10.1016/j.ecresq.2014.02.001
Hulme, C., Bowyer-Crane, C., Carroll, J. M., Duff, F. J., & Snowling, M. J. (2012). The causal role of phoneme awareness and letter-sound knowledge in learning to read: Combining intervention studies with mediation analyses. Psychological Science, 23, 572577. doi:10.1177/0956797611435921
Hulme, C., Stothard, S. E., Clark, P., Bowyer-Crane, C., Harrington, A., Truelove, E., & Snowling, M. J. (2009). YARC York assessment of reading for comprehension. Early reading. London: GL Assessment.
Jones, C. D., Clark, S. K., & Reutzel, D. R. (2013). Enhancing alphabet knowledge instruction: Research implications and practical strategies for early childhood educators. Early Childhood Education Journal, 41, 8189. doi:10.1007/s10643-012-0534-9
Justice, L. M., Pence, K., Bowles, R. B., & Wiggins, A. K. (2006). An investigation of four hypotheses concerning the order by which 4-year-old children learn the alphabet letters. Early Childhood Research Quarterly, 21, 374389. doi:10.1016/j.ecresq.2006.07.010
Kim, Y.-S., Petscher, Y., Foorman, B. R., & Zhou, C. (2010). The contributions of phonological awareness and letter-name knowledge to letter-sound acquisition—A cross-classified multilevel model approach. Journal of Educational Psychology, 102, 313326. doi:10.1037/a0018449
Lehr, F. R. (1996). The sequence of speech-sound acquisition in the Letter People programs. Waterbury, CT: Abrams.
Levin, I., & Aram, D. (2005). Children’s names contribute to early literacy: A linguistic and a social perspective. In Ravid, D. & Shyldkrot, H. B.-Z. (Eds.), Perspectives on language and language development (pp. 219239). New York: Springer.
Liberman, I. Y., Shankweiler, D., Orlando, C., Harris, K. S., & Berti, F. B. (1971). Letter confusions and reversals of sequence in the beginning reader: Implications for Orton’s theory of developmental dyslexia. Cortex, 7, 127142.
McArthur, G., Sheehan, Y., Badcock, N. A., Francis, D. A., Wang, H.-C., Kohnen, S., … Castles, A. (2018). Phonics training for English-speaking poor readers. Cochrane Database of Systematic Reviews, 11. doi:10.1002/14651858.CD009115.pub2
McBride-Chang, C. (1999). The ABCs of the ABCs: The development of letter-name and letter-sound knowledge. Merrill-Palmer Quarterly, 45, 285308.
Nag, S., Snowling, M., Quinlan, P., & Hulme, C. (2014). Child and symbol factors in learning to read a visually complex writing system. Scientific Studies of Reading, 18, 309324. doi:10.1080/10888438.2014.892489
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 2, 133142. doi:10.1111/j.2041-210x.2012.00261.x
Perfetti, C. (2007). Reading ability: Lexical quality to comprehension. Scientific Studies of Reading, 11, 357383. doi:10.1080/10888430701530730
Piasta, S. B., Phillips, B. M., Williams, J. M., Bowles, R. P., & Anthony, J. L. (2016). Measuring young children’s alphabet knowledge: Development and validation of brief letter-sound assessments. Elementary School Journal, 116, 523548. doi:10.1086/686222
Piasta, S. B., & Wagner, R. K. (2010). Learning letter names and sounds: Effects of instruction, letter type, and phonological processing skill. Journal of Experimental Child Psychology, 105, 324344. doi:10.1016/j.jecp.2009.12.008
Popp, H. M. (1964). Visual discrimination of alphabet letters. Reading Teacher, 17, 221226.
R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: FR Foundation for Statistical Computing. Retrieved from http://www.r-project.org/
Schatschneider, C., Fletcher, J. M., Francis, D. J., Carlson, C. D., & Foorman, B. R. (2004). Kindergarten prediction of reading skills: A longitudinal comparative analysis. Journal of Educational Psychology, 96, 265282. doi:10.1037/0022-0663.96.2.265
Shriberg, L. D. (1993). Four new speech and prosody-voice measures for genetics research and other studies in developmental phonological disorders. Journal of Speech and Hearing Research, 36, 105140. doi:10.1044/jshr.3601.105
Snow, C. E., Burns, M. S., & Griffin, P. (1998). Preventing reading difficulties in young children. Washington, DC: National Academy Press.
Stuart, M., & Coltheart, M. (1988). Does reading develop in a sequence of stages? Cognition, 30, 139181. doi:10.1016/0010-0277(88)90038-8
Thompson, G. B. (2009). The long learning route to abstract letter units. Cognitive Neuropsychology, 26, 5069. doi:10.1080/02643290802200838
Treiman, R., & Broderick, V. (1998). What’s in a name: Children’s knowledge about the letters in their own names. Journal of Experimental Child Psychology, 70, 97116. doi:10.1006/jecp.1998.2448
Treiman, R., & Kessler, B. (2003). The role of letter names in the acquisition of literacy. In Kail, R. V. (Ed.), Advances in child development and behavior (Vol. 31, pp. 101135). San Diego, CA: Academic Press.
Treiman, R., & Kessler, B. (2004). The case of case: Children’s knowledge and use of upper- and lowercase letters. Applied Psycholinguistics, 25, 413428. doi:10.1017/S0142716404001195
Treiman, R., Levin, I., & Kessler, B. (2012). Linking the shapes of alphabet letters to their sounds: The case of Hebrew. Reading and Writing, 25, 569585. doi:10.1007/s11145-010-9286-3
Treiman, R., Schmidt, J., Decker, K., Robins, S., Levine, S. C., & Demir, Ö. E. (2015). Parents’ talk about letters with their young children. Child Development, 86, 14061418. doi:10.1111/cdev.12385
Treiman, R., Tincoff, R., Rodriguez, K., Mouzaki, A., & Francis, D. J. (1998). The foundations of literacy: Learning the sounds of letters. Child Development, 69, 15241540. doi:10.1111/j.1467-8624.1998.tb06175.x
Welsch, J. G., Sullivan, A., & Justice, L. M. (2003). That’s my letter! What preschoolers’ name writing representations tell us about emergent literacy knowledge. Journal of Literacy Research, 35, 757776. doi:10.1207/s15548430jlr3502
Werker, J. F., Bryson, S. E., & Wassenberg, K. (1989). Toward understanding the problem in severely disabled readers: Part II. Consonant errors. Applied Psycholinguistics, 10, 1330. doi:10.1017/S0142716400008390

Keywords

Related content

Powered by UNSILO

Knowledge of letter sounds in children from England

  • Rebecca Treiman (a1), Susan E. Stothard (a2) and Margaret J. Snowling (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.