Skip to main content Accessibility help
×
Home

STRATEGIC CUSTOMERS IN MARKOVIAN QUEUES WITH VACATIONS AND SYNCHRONIZED ABANDONMENT

  • GOPINATH PANDA (a1) and VEENA GOSWAMI (a2)

Abstract

We study impatient customers’ joining strategies in a single-server Markovian queue with synchronized abandonment and multiple vacations. Customers receive the system information upon arrival, and decide whether to join or balk, based on a linear reward-cost structure under the acquired information. Waiting customers are served in a first-come-first-serve discipline, and no service is rendered during vacation. Server’s vacation becomes the cause of impatience for the waiting customers, which leads to synchronous abandonment at the end of vacation. That is, customers consider simultaneously but independent of others, whether to renege the system or to remain. We are interested to study the effect of both information and reneging choice on the balking strategies of impatient customers. We examine the customers’ equilibrium and socially optimal balking strategies under four cases of information: fully/almost observable and fully/almost unobservable cases, assuming the linear reward-cost structure. We compare the social benefits under all the information policies.

Copyright

Corresponding author

References

Hide All
[1]Adan, I., Economou, A. and Kapodistria, S., “Synchronized reneging in queueing systems with vacations”, Queueing Syst. 62 (2009) 133; doi:10.1007/s11134-009-9112-2.
[2]Altman, E. and Yechiali, U., “Analysis of customers’ impatience in queues with server vacations”, Queueing Syst. 52 (2006) 261279; doi:10.1007/s11134-006-6134-x.
[3]Assaf, D. and Haviv, M., “Reneging from processor sharing systems and random queues”, Math. Oper. Res. 15 (1990) 129138; doi:10.1287/moor.15.1.129.
[4]Burnetas, A. and Economou, A., “Equilibrium customer strategies in a single server Markovian queue with setup times”, Queueing Syst. 56(3–4) (2007) 213228; doi:10.1007/s11134-007-9036-7.
[5]Dimou, S. and Economou, A., “The single server queue with catastrophes and geometric reneging”, Methodol. Comput. Appl. Probab. 15 (2013) 595621; doi:10.1007/s11009-011-9271-6.
[6]Dimou, S., Economou, A. and Fakinos, D., “The single server vacation queueing model with geometric abandonments”, J. Statist. Plann. Inference 141 (2011) 28632877; doi:10.1016/j.jspi.2011.03.010.
[7]Economou, A. and Kapodistria, S., “Synchronized abandonments in a single server unreliable queue”, European J. Oper. Res. 203 (2010) 143155; doi:10.1016/j.ejor.2009.07.014.
[8]Guo, P. and Hassin, R., “Strategic behavior and social optimization in Markovian vacation queues”, Oper. Res. 59 (2011) 986997; doi:10.1287/opre.1100.0907.
[9]Hassin, R., Rational queueing (CRC Press, New York, NY, 2016).
[10]Hassin, R. and Haviv, M., “Equilibrium strategies for queues with impatient customers”, Oper. Res. Lett. 17 (1995) 4145; doi:10.1016/0167-6377(94)00049-c.
[11]Hassin, R. and Haviv, M., To queue or not to queue: equilibrium behavior in queueing systems (Springer Science & Business Media, Boston, MA, 2003).
[12]Haviv, M. and Ritov, Y., “Homogeneous customers renege from invisible queues at random times under deteriorating waiting conditions”, Queueing Syst. 38 (2001) 495508; doi:10.1023/A:1010908330518.
[13]Kapodistria, S., “The M/M/1 queue with synchronized abandonments”, Queueing Syst. 68 (2011) 79109; doi:10.1007/s11134-011-9219-0.
[14]Lee, D. H., “Equilibrium balking strategies in Markovian queues with a single working vacation and vacation interruption”, Qual. Technol. Quant. Manag. (2018) 122; doi:10.1080/16843703.2018.1429805.
[15]Liu, J. and Wang, J., “Strategic joining rules in a single server Markovian queue with Bernoulli vacation”, Oper. Res. Int. J. 17 (2017) 413434; doi:10.1007/s12351-016-0231-3.
[16]Mandelbaum, A. and Shimkin, N., “A model for rational abandonments from invisible queues”, Queueing Syst. 36 (2000) 141173; doi:10.1023/A:1019131203242.
[17]Panda, G., Goswami, V. and Banik, A. D., “Equilibrium and socially optimal balking strategies in Markovian queues with vacations and sequential abandonment”, Asia-Pac. J. Oper. Res. 33 (2016) 1650036; doi:10.1142/s0217595916500366.
[18]Shimkin, N. and Mandelbaum, A., “Rational abandonment from tele-queues: nonlinear waiting costs with heterogeneous preferences”, Queueing Syst. 47 (2004) 117146; doi:10.1023/b:ques.0000032804.57988.f3.
[19]Tian, R., Hu, L. and Wu, X., “Equilibrium and optimal strategies in M/M/1 queues with working vacations and vacation interruptions”, Math. Probl. Eng. 2016 (2016) 110; doi:10.1155/2016/9746962.
[20]Yechiali, U., “Queues with system disasters and impatient customers when system is down”, Queueing Syst. 56 (2007) 195202; doi:10.1007/s11134-007-9031-z.
[21]Zhang, F., Wang, J. and Liu, B., “Equilibrium balking strategies in Markovian queues with working vacations”, Appl. Math. Model. 37 (2013) 82648282; doi:10.1016/j.apm.2013.03.049.
[22]Zohar, E., Mandelbaum, A. and Shimkin, N., “Adaptive behavior of impatient customers in tele-queues: theory and empirical support”, Manag. Sci. 48 (2002) 566583; doi:10.1287/mnsc.48.4.566.211.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

STRATEGIC CUSTOMERS IN MARKOVIAN QUEUES WITH VACATIONS AND SYNCHRONIZED ABANDONMENT

  • GOPINATH PANDA (a1) and VEENA GOSWAMI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.