Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-zhxtg Total loading time: 0.653 Render date: 2021-05-09T09:11:49.607Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Steady Prandtl-Batchelor flows past a circular cylinder

Published online by Cambridge University Press:  17 February 2009

G. C. Hocking
Affiliation:
Mathematics & Statistics, Murdoch University, Murdoch, WA 6150, Australia; e-mail: G.Hocking@murdoch.edu.au.
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

The high Reynolds number flow past a circular cylinder with a trailing wake region is considered when the wake region is bounded and contains uniform vorticity. The formulation allows only for a single vortex pair trapped behind the cylinder, but calculates solutions over a range of values of vorticity. The separation point and length of the region are determined as outputs. It was found that using this numerical method there is an upper bound on the vorticity for which solutions can be calculated for a given arclength of the cavity. In some cases with shorter cavities, the limiting solutions coincide with the formation of a stagnation point in the outer flow at both separation from the cylinder and reattachment at the end of the cavity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Batchelor, G. K., “On steady laminar flow with closed streamlines at large Reynolds number”, J. Fluid Mech. 1 (1956) 177190.CrossRefGoogle Scholar
[2]Batchelor, G. K., “A proposal concerning laminar wakes behind bluff bodies at large Reynolds number”, J. Fluid Mech. 1 (1956) 388398.CrossRefGoogle Scholar
[3]Batchelor, G. K., An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).Google Scholar
[4]Childress, S., “Solutions of Euler's equations containing finite eddies”, Phys. Fluids 9 (1966) 860872.CrossRefGoogle Scholar
[5]Cumberbatch, E. and Wu, T. Y., “Cavity flow past a slender hydrofoil”, J. Fluid Mech. 11 (1961) 187208.CrossRefGoogle Scholar
[6]Elcrat, A., Fornberg, B., Horn, M. and Miller, K., “Some steady vortex flows past a circular cylinder”, J. Fluid Mech. 409 (2000) 1327.CrossRefGoogle Scholar
[7]Forbes, L. K., “On the effects of non-linearity in free-surface flow about a submerged point vortex”, J. Eng. Maths 19 (1985) 139155.CrossRefGoogle Scholar
[8]Fornberg, B., “Steady viscous flow past a circular cylinder up to Reynold's number 600”, J. Comp. Physics 61 (1985) 297320.CrossRefGoogle Scholar
[9]Fornberg, B., “Steady incompressible flow past a row of circular cylinders”, J. Fluid Mech. 225 (1991)655671.CrossRefGoogle Scholar
[10]Gurevich, M., Theory of jets and ideal fluids (Academic Press, New York, 1955).Google Scholar
[11]Lamb, H., Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, 1932).Google Scholar
[12]Liggett, J. A. and Liu, P.-F., The boundary element method for porous media flow (Allen and Unwin, London, 1983).Google Scholar
[13]Lighthill, M. J., “A note on cusped cavities”, Tech. Rep. 2328, Aero. Res. Coun. Rep. Mem., 1946.Google Scholar
[14]Lighthill, M. J., “On boundary layers and upstream influence, I. A comparison between subsonic and supersonic flows”, Proc. Roy. Soc. Lond. A 217 (1953) 344357.CrossRefGoogle Scholar
[15]Moore, D., Saffman, P. and Tanveer, S., “The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow”, Phys. Fluids 31 (1988) 978990.CrossRefGoogle Scholar
[16]Sadovskii, V. S., “Vortex regions in a potential stream with a jump of Bernoulli's constant at the boundary”, Appl. Math. Mech. 35 (1971) 729.CrossRefGoogle Scholar
[17]Smith, F. T., “A structure for laminar flow past a bluff body at high Reynolds number”, J. Fluid Mech. 155 (1985) 175191.CrossRefGoogle Scholar
[18]Southwell, R. V. and Vaisey, G., “Fluid motions characterised by ‘free’ streamlines”, Phil. Trans. Roy. Soc. A 240 (1946) 117161.CrossRefGoogle Scholar
[19]Vanden-Broeck, J.-M., “Nonlinear capillary free-surface flows”, J. Eng. Math. 50 (2004) 415426, Lighthill Memorial Paper.CrossRefGoogle Scholar
[20]Vanden-Broeck, J.-M. and Tuck, E. O., “Steady inviscid rotational flows with free surfaces”, J. Fluid Mech. 258 (1994) 105113.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Steady Prandtl-Batchelor flows past a circular cylinder
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Steady Prandtl-Batchelor flows past a circular cylinder
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Steady Prandtl-Batchelor flows past a circular cylinder
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *