Skip to main content Accessibility help




We consider a theoretical model for the flow of Newtonian fluid through a long flexible-walled channel which is formed from four compliant and rigid compartments arranged alternately in series. We drive the flow using a fixed upstream flux and derive a spatially one-dimensional model using a flow profile assumption. The compliant compartments of the channel are assumed subject to a large external pressure, so the system admits a highly collapsed steady state. Using both a global (linear) stability eigensolver and fully nonlinear simulations, we show that these highly collapsed steady states admit a primary global oscillatory instability similar to observations in a single channel. We also show that in some regions of the parameter space the system admits a secondary mode of instability which can interact with the primary mode and lead to significant changes in the structure of the neutral stability curves. Finally, we apply the predictions of this model to the flow of blood through the central retinal vein and examine the conditions required for the onset of self-excited oscillation. We show that the neutral stability curve of the primary mode of instability discussed above agrees well with canine experimental measurements of the onset of retinal venous pulsation, although there is a large discrepancy in the oscillation frequency.


Corresponding author


Hide All
[1] Armitstead, J. P., Bertram, C. D. and Jensen, O. E., “A study of the bifurcation behaviour of a model of flow through a collapsible tube”, Bull. Math. Biol. 58 (1996) 611641; doi:10.1007/BF02459476.
[2] Band, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H. and Foss, A. J. E., “Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma”, Invest. Ophthalmol. Vis. Sci. 50 (2009) 37503758; doi:10.1167/iovs.08-2396.
[3] Bertram, C. D. and Pedley, T. J., “A mathematical model of unsteady collapsible tube behaviour”, J. Biomech. 15 (1982) 3950; doi:10.1016/0021-9290(82)90033-1.
[4] Bertram, C. D., Raymond, C. J. and Pedley, T. J., “Mapping of instabilities for flow through collapsed tubes of differing length”, J. Fluids Struct. 4 (1990) 125153; doi:10.1016/0889-9746(90)90058-D.
[5] Bertram, C. D. and Tscherry, J., “The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes”, J. Fluids Struct. 22 (2006) 10291045; doi:10.1016/j.jfluidstructs.2006.07.005.
[6] Cancelli, C. and Pedley, T. J., “A separated-flow model for collapsible-tube oscillations”, J. Fluid Mech. 157 (1985) 375404; doi:10.1017/S0022112085002427.
[7] Coccius, E. A., Ueber die Anwendung des Augen-Spiegels: nebst Angabe eines neuen Instrumentes (I. Müller, Leipzig, 1853);
[8] Davies, C. and Carpenter, P. W., “Instabilities in a plane channel flow between compliant walls”, J. Fluid Mech. 352 (1997) 205243; doi:10.1017/S0022112097007313.
[9] Davies, C. and Carpenter, P. W., “Numerical simulation of the evolution of Tollmien–Schlichting waves over finite compliant panels”, J. Fluid Mech. 335 (1997) 361392; doi:10.1017/S0022112096004636.
[10] Garhofer, G., Werkmeister, R., Dragostinoff, N. and Schmetterer, L., “Retinal blood flow in healthy young subjects”, Invest. Ophthalmol. Vis. Sci. 53 (2012) 698703; doi:10.1167/iovs.11-8624.
[11] Golzan, S. M., Graham, S. L., Leaney, J. and Avolio, A., “Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins”, Curr. Eye Res. 36 (2011) 5359; doi:10.3109/02713683.2010.530731.
[12] Golzan, S. M., Kim, M. O., Seddighi, A. S., Avolio, A. and Graham, S. L., “Non-invasive estimation of cerebrospinal fluid pressure waveforms by means of retinal venous pulsatility and central aortic blood pressure”, Ann. Biomed. Eng. 40 (2012) 19401948; doi:10.1007/s10439-012-0563-y.
[13] Grotberg, J. B. and Jensen, O. E., “Biofluid mechanics in flexible tubes”, Annu. Rev. Fluid Mech. 36 (2004) 121147; doi:10.1146/annurev.fluid.36.050802.121918.
[14] Guidoboni, G., Harris, A., Cassani, S., Arciero, J., Siesky, B., Amireskandari, A., Tobe, L., Egan, P., Januleviciene, I. and Park, J., “Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance”, Invest. Ophthalmol. Vis. Sci. 55 (2014) 41054118; doi:10.1167/iovs.13-13611.
[15] Hayreh, S. S., “The central artery of the retina. Its role in the blood supply of the optic nerve”, Br. J. Ophthalmol. 47 (1963) 651663; doi:10.1136/bjo.47.11.651.
[16] Hayreh, S. S., “Non-invasive measurement of intracranial pressure”, Lancet 351 (1998) 524525; doi:10.1016/S0140-6736(05)78719-5.
[17] Heil, M. and Boyle, J., “Self-excited oscillations in three-dimensional collapsible tubes: simulating their onset and large-amplitude oscillations”, J. Fluid Mech. 652 (2010) 405426; doi:10.1017/S0022112010000157.
[18] Heil, M. and Hazel, A. L., “Fluid-structure interaction in internal physiological flows”, Annu. Rev. Fluid Mech. 43 (2011) 141162; doi:10.1146/annurev-fluid-122109-160703.
[19] Jensen, O. E., “Instabilities of flow in a collapsed tube”, J. Fluid Mech. 220 (1990) 623659; doi:10.1017/S0022112090003408.
[20] Jensen, O. E. and Heil, M., “High-frequency self-excited oscillations in a collapsible-channel flow”, J. Fluid Mech. 481 (2003) 235268; doi:10.1017/S002211200300394X.
[21] Jonas, J. B., “Retinal venous pulsation and glaucoma”, Ophthalmology 112 (2005) 948949; doi:10.1016/j.ophtha.2004.11.014.
[22] Jonas, J., Paques, M., Monés, J. and Glacet-Bernard, A., “Retinal vein occlusions”, in: Macular edema, Volume 47 of Dev. Opthalmol. (eds Coscas, G., Cunha-Vaz, J., Loewenstein, A. and Soubrane, G.), (Karger, Basel, 2010) 111135; doi:10.1159/000320076.
[23] Knowlton, F. P. and Starling, E. H., “The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart”, J. Physiol. 44(3) (1912) 206219; doi:10.1113/jphysiol.1912.sp001511.
[24] Kramer, M. O., “Boundary layer stabilization by distributed damping”, J. Amer. Soc. Naval Eng. 72 (1960) 2534; doi:10.1111/j.1559-3584.1960.tb02356.x.
[25] Levin, B. E., “The clinical significance of spontaneous pulsations of the retinal vein”, Arch. Neurol. 35 (1978) 3740; doi:10.1001/archneur.1978.00500250041009.
[26] Levine, D. N., “Spontaneous pulsation of the retinal veins”, Microvas. Res. 56 (1998) 154165; doi:10.1006/mvre.1998.2098.
[27] Luo, X. Y., Cai, Z. X., Li, W. G. and Pedley, T. J., “The cascade structure of linear instability in collapsible channel flows”, J. Fluid Mech. 600 (2008) 4576; doi:10.1017/S0022112008000293.
[28] Luo, X. Y. and Pedley, T. J., “A numerical simulation of unsteady flow in a two-dimensional collapsible channel”, J. Fluid Mech. 314 (1996) 191225; doi:10.1017/S0022112096000286.
[29] Luo, X. Y. and Pedley, T. J., “The effects of wall inertia on flow in a two-dimensional collapsible channel”, J. Fluid Mech. 363 (1998) 253280; doi:10.1017/S0022112098001062.
[30] McClurken, M. E., Kececioglu, I., Kamm, R. D. and Shapiro, A. H., “Steady, supercritical flow in collapsible tubes. Part 2. Theoretical studies”, J. Fluid Mech. 109 (1981) 391415; doi:10.1017/S0022112081001134.
[31] Moghimi, S., Hosseini, H., Riddle, J., Lee, G. Y., Bitrian, E., Giaconi, J., Caprioli, J. and Nouri-Mahdavi, K., “Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy”, Invest. Ophthalmol. Vis. Sci. 53 (2012) 45194530; doi:10.1167/iovs.11-8362.
[32] Morgan, W. H., Hazelton, M. L., Azar, S. L., House, P. H., Yu, D.-Y., Cringle, S. J. and Balaratnasingam, C., “Retinal venous pulsation in glaucoma and glaucoma suspects”, Ophthalmology 111 (2004) 14891494; doi:10.1016/j.ophtha.2003.12.053.
[33] Morgan, W. H., Hazelton, M. L. and Yu, D.-Y., “Retinal venous pulsation: expanding our understanding and use of this enigmatic phenomenon”, Prog. Ret. Eye Res. 55 (2016) 82107; doi:10.1016/j.preteyeres.2016.06.003.
[34] Morgan, W. H., Yu, D.-Y. and Balaratnasingam, C., “The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc”, J. Glaucoma 17 (2008) 408413; doi:10.1097/IJG.0b013e31815c5f7c.
[35] Pedley, T. J., The fluid mechanics of large blood vessels (Cambridge University Press, Cambridge, 1980); doi:10.1017/CBO9780511896996.
[36] Pihler-Puzović, D. and Pedley, T. J., “Flutter in a quasi-one-dimensional model of a collapsible channel”, Proc. R. Soc. Lond. Ser. A 470 (2014) 20140015; doi:10.1098/rspa.2014.0015.
[37] Sen, P. K., Carpenter, P. W., Hedge, S. and Davies, C., “A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls”, J. Fluid Mech. 625 (2009) 146; doi:10.1017/S0022112008005545.
[38] Singh, S. and Dass, R., “The central artery of the retina I. Origin and course”, Br. J. Ophthalmol. 44 (1960) 193212; doi:10.1136/bjo.44.4.193.
[39] Singh, S. and Dass, R., “The central artery of the retina II. A study of its distribution and anastomoses”, Br. J. Ophthalmol. 44 (1960) 280299; doi:10.1136/bjo.44.5.280.
[40] Stewart, P. S., “Instabilities in flexible channel flow with large external pressure”, J. Fluid Mech. 825 (2017) 922960; doi:10.1017/jfm.2017.404.
[41] Stewart, P. S., Heil, M., Waters, S. L. and Jensen, O. E., “Sloshing and slamming oscillations in collapsible channel flow”, J. Fluid Mech. 662 (2010) 288319; doi:10.1017/S0022112010003277.
[42] Stewart, P. S., Jensen, O. E. and Foss, A. J. E., “A theoretical model to allow prediction of the CSF pressure from observations of the retinal venous pulse”, Invest. Ophthalmol. Vis. Sci. 55 (2014) 63196323; doi:10.1167/iovs.14-14331.
[43] Stewart, P. S., Waters, S. L. and Jensen, O. E., “Local and global instabilities of flow in a flexible-walled channel”, Eur. J. Mech. B 28 (2009) 541557; doi:10.1016/j.euromechflu.2009.03.002.
[44] Walsh, T. J., Garden, J. W. and Gallagher, B., “Obliteration of retinal venous pulsations: during elevation of cerebrospinal-fluid pressure”, Amer. J. Ophthalmol. 67(6) (1969) 954956; doi:10.1016/0002-9394(69)90094-4.
[45] Whittaker, R. J., Heil, M., Jensen, O. E. and Waters, S. L., “A rational derivation of a tube law from shell theory”, Quart. J. Mech. Appl. Math. 63 (2010) 465496; doi:10.1093/qjmam/hbq020.
[46] Williamson, T. H., Lowe, G. D. and Baxter, G. M., “Influence of age, systemic blood pressure, smoking, and blood viscosity on orbital blood velocities”, Br. J. Ophthalmol. 79 (1995) 1722; doi:10.1136/bjo.79.1.17.
[47] Wong, T. Y. and Scott, I. U., “Retinal-vein occlusion”, New Engl. J. Med. 363 (2010) 21352144; doi:10.1056/NEJMcp1003934.
[48] Xie, X. et al. , “Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing intracranial and intraocular pressure (iCOP) study”, Crit. Care 17 (2013) R162; doi:10.1186/cc12841.
[49] Xu, F., Billingham, J. and Jensen, O. E., “Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux”, J. Fluid Mech. 723 (2013) 706733; doi:10.1017/jfm.2013.97.
[50] Xu, F., Billingham, J. and Jensen, O. E., “Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment”, J. Fluid Mech. 746 (2014) 368404; doi:10.1017/jfm.2014.136.
[51] Xu, F. and Jensen, O. E., “A low-order model for slamming in a flexible-channel flow”, Quart. J. Mech. Appl. Math. 68 (2015) 299319; doi:10.1093/qjmam/hbv009.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification




Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed