Home

# ON THE TOPOGRAPHY-DRIVEN VORTICITY PRODUCTION IN SHALLOW LAKES

## Abstract

We analyse the vorticity production of lake-scale circulation in wind-induced shallow flows using a linear elliptic partial differential equation. The linear equation is derived from the vorticity form of the shallow-water equation using a linear bed friction formula. The features of the wind-induced steady-state flow are analysed in a circular basin with topography as a concave paraboloid, having a quadratic pile in the middle of the basin. In our study, the size of the pile varies by a size parameter. The vorticity production due to the gradient in the topography (and the distance of the boundary) makes the streamlines parallel to topographical contours, and beyond a critical size parameter, it results in a secondary vortex pair. We compare qualitatively and quantitatively the steady-state circulation patterns and vortex evolution of the flow fields calculated by our linear vorticity model and the full, nonlinear shallow-water equations. From these results, we hypothesize that the steady-state topographical vorticity production in lake-scale wind-induced circulations can be described by the equilibrium of the wind friction field and the bed friction field. Moreover, the latter can also be considered as a linear function of the velocity vector field, and hence the problem can be described by a linear equation.

## References

Hide All
[1] Abbot, M. B. and Basco, D. R., Computational fluid dynamics, an introduction for engineers (Longman Group, Harlow, 1989).
[2] Andradóttir, H. O. and Mortamet, M.-L., “Impact of wind on storm-water pond hydraulics”, J. Hydraul. Eng. 142 (2016) Id 04016034; doi:10.1061/(ASCE)HY.1943-7900.0001150.
[3] Borthwick, A. G. L. and Kaar, E. T., “Shallow flow modelling using curvilinear depth-averaged stream function and vorticity transport equations”, Int. J. Numer. Methods Fluids 17 (1993) 417445; doi:10.1002/fld.1650170506.
[4] Chen, Z. M. and Price, W. G., “Bifurcating periodic solutions of wind-driven circulation equations”, J. Math. Anal. Appl. 304 (2005) 783796; doi:10.1016/j.jmaa.2004.09.062.
[5] Chubarenko, B. W., Wang, Y., Chubarenko, I. and Hutter, C., “Wind-driven current simulations around the Island Mainau (Lake Constance)”, Ecol. Modell. 138 (2001) 5573; doi:10.1016/S0304-3800(00)00393-8.
[6] Csanady, G. T., “The arrested topographic wave”, J. Phys. Oceanogr. 8 (1978) 4762; 10.1175/1520-0485(1978)008¡0047:TATW¿2.0.CO;2.
[7] Da, C., Shen, B., Yan, P. C., Ma, D. and Song, J., “The shallow water equation and the vorticity equation for a change in height of the topography”, PLoS ONE 12 (2017) e0178184; doi:10.1371/journal.pone.0178184.
[8] Danish Hydraulic Institute, MIKE 21 flow model FM hydrodynamic and transport module(Danish Hydraulic Institute for Water and Environment, Horsholm, 2011).
[9] Dippner, J. W., “Vorticity analysis of transient shallow water eddy fields at the river plume front of the River Elbe in the German Bight”, J. Mar. Syst. 14 (1998) 117133; doi:10.1016/S0924-7963(97)00008-0.
[10] Ferziger, J. H. and Peric, M., Computational methods for fluid dynamics (Springer, Berlin, 2002).
[11] Hansen, E. A. and Arneborg, L., “The use of a discrete Vortex model for shallow water flow around islands and coastal structures”, Coast. Eng. 32 (1997) 223246; doi:10.1016/S0378-3839(97)81751-6.
[12] Huang, J. C. K. and Saylor, J. H., “Vorticity waves in a shallow basin”, Dyn. Atmos. Ocean. 6 (1982) 177196; doi:10.1016/0377-0265(82)90023-9.
[13] Jamart, B. M. and Ozer, J., “Comparison of 2-D and 3-D models of the steady wind-driven circulation in shallow waters”, Coast. Eng. 11 (1987) 393413; doi:10.1016/0378-3839(87)90020-2.
[14] Jenter, H. L. and Madsen, O. S., “Bottom stress in wind-driven depth-averaged coastal flows”, J. Phys. Oceanogr. 19 (1989) 962974; 10.1175/1520-0485(1989)019¡0962:BSIWDD¿2.0.CO;2.
[15] Józsa, J., “On the internal boundary layer related wind stress curl and its role in generating shallow lake circulations”, J. Hydrol. Hydromech. 62 (2014) 1623; doi:10.2478/johh-2014-0004.
[16] Józsa, J., Krámer, T., Napoli, E. and Lipari, G., “Sensitivity of wind-induced shallow lake circulation patterns on changes in lakeshore land use”, EGU Gen. Assem. 2006 8 (2006) 12; EGU06-A-00786.
[17] Kimura, N., Wu, C., Hoopes, J. A. and Tai, A., “Diurnal dynamics in a small shallow lake under spatially nonuniform wind and weak stratification”, J. Hydraul. Eng. 142 (2016); Id 04016047; doi:10.1061/(ASCE)HY.1943-7900.0001190.
[18] Krámer, T. and Józsa, J., “An adaptively refined, finite-volume model of wind-induced currents in Lake Neusiedl”, Period. Polytech. 49 (2005) 111136; https://pp.bme.hu/ci/article/view/575.
[19] Krámer, T., Józsa, J. and Torma, P., “Large-scale mixing of water imported into a shallow lake”, Proc. 3rd Int. Symp. on Shallow Flows, Iowa City, IO, USA, 4–6 June 2012, (eds Constantinescu, G. and Fernando, H. J.), available at http://real.mtak.hu/17101/.
[20] Laval, B. and Imberger, J., “Modelling circulation in lakes: Spatial and temporal variations”, Limnol. Oceanogr. 48 (2003) 983994; doi:10.4319/lo.2003.48.3.0983.
[21] Laval, B., Imberger, J. and Findikakis, A. N., “Dynamics of a large tropical lake: Lake Maracaibo”, Aquat. Sci. 67 (2005) 337349; doi:10.1007/s00027-005-0778-1.
[22] Li, Y., Zhang, Q., Yao, J. and Werner, A. D., “Hydrodynamic and hydrological modelling of the Poyang Lake Catchment System in China”, J. Hydrol. Eng. 19 (2014) 607616; doi:10.1061/(ASCE)HE.1943-5584.0000835.
[23] Liu, S., Ye, Q., Wu, S. and Stive, M. J. F., “Horizontal circulation patterns in a large shallow lake: Taihu Lake, China”, Water 10 (2018) 792; doi:10.3390/w10060792.
[24] Park, M. J. and Wang, D. P., “Tidal vorticity over isolated topographic features”, Cont. Shelf Res. 14 (1994) 15831599; doi:10.1016/0278-4343(94)90091-4.
[25] Rubbert, S. and Köngeter, J., “Measurements and three-dimensional simulations of flow in a shallow reservoir subject to small-scale wind field inhomogeneities induced by sheltering”, Aquat. Sci. 67 (2005) 104121; doi:10.1007/s00027-004-0719-4.
[26] Salsa, S., Partial differential equations in action (Springer, Cham, 2015).
[27] Schoen, J. H., Stretch, D. D. and Tirok, K., “Wind-driven circulation patterns in a shallow estuarine lake: St Lucia, South Africa”, Estuar. Coast. Shelf Sci. 146 (2014) 4959; doi:10.1016/j.ecss.2014.05.007.
[28] Schwab, D. J., “Simulation and forecasting of Lake Erie storm surges”, Month. Weath. Rev. 106 (1978) 14761487; 10.1175/1520-0493(1978)106¡1476:SAFOLE¿2.0.CO;2.
[29] Schwab, D. J., “An inverse method for determining wind stress from water-level fluctuations”, Dyn. Atmos. Oceans 6 (1982) 251278; doi:10.1016/0377-0265(82)90032-X.
[30] Schwab, D. J. and Beletsky, D., “Relative effects of wind stress curl, topograpy, and stratification on large-scale circulation in Lake Michigan”, J. Geophys. Res. 108 (2003); C2 3044; doi:10.1029/2001JC001066.
[31] Shilo, E., “Wind spatial variability and topographic wave frequency”, J. Phys. Oceanogr. 38 (2008) 20852096; doi:10.1175/2008JPO3886.1.
[32] Shilo, E., Ashkenazy, Y., Rimmer, A., Assouline, S., Katsafados, P. and Mahrer, Y., “Effect of wind variability on topographic waves: Lake Kinneret case”, J. Geophys. Res. 112 (2007); C1 2024; doi:10.1029/2007JC004336.
[33] Simons, T. J., “Circulation models of lakes and inland seas”, in: Canadian bulletin of fisheries and aquatic sciences (Dept. of Fisheries and Oceans, Ottawa, 1980).
[34] Simons, T. J., “Reliability of circulation models”, J. Phys. Oceanogr. 15 (1985) 11911204; 10.1175/1520-0485(1985)015¡1191:ROCM¿2.0.CO;2.
[35] Torma, P. and Wu, C. H., “Temperature and circulation dynamics in a small and shallow lake: effects of weak stratification and littoral submerged macrophytes”, Water 11 (2019) 128; doi:10.3390/w11010128.
[36] Wu, J., “Wind–stress coefficients over sea surface from breeze to hurricane”, J. Geophys. Res. 87 (1982) 9704; doi:10.1029/JC087iC12p09704.
[37] Zimmerman, J. T. F., “Topographic generation of residual circulation by oscillatory (tidal) currents”, Geophys. Astrophys. Fluid Dyn. 11(1) (1978) 3547; doi:10.1080/03091927808242650.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *