Skip to main content Accessibility help
×
Home

ON THE CONVERGENCE OF DISCRETE PROCESSES WITH MULTIPLE INDEPENDENT VARIABLES

  • N. ISHIMURA (a1) and N. YOSHIDA (a2)

Abstract

We discuss discrete stochastic processes with two independent variables: one is the standard symmetric random walk, and the other is the Poisson process. Convergence of discrete stochastic processes is analysed, such that the symmetric random walk tends to the standard Brownian motion. We show that a discrete analogue of Ito’s formula converges to the corresponding continuous formula.

Copyright

Corresponding author

References

Hide All
[1] Cont, R. and Tankov, P., Financial modelling with jump processes (CRC Press, Boca Raton, FL, 2003).
[2] Cox, J. C., Ross, S. A. and Rubinstein, M., “Option pricing: a simplified approach”, J. Financial Econ. 7 (1979) 229263; doi:10.1016/0304-405X(79)90015-1.
[3] Fujita, T., Ishimura, N. and Kawai, N., “Discrete stochastic calculus and its applications: an expository note”, Adv. Math. Econ. 16 (2012) 119131; doi:10.1007/978-4-431-54114-1_6.
[4] Fujita, T. and Kawanishi, Y., “A proof of Ito’s formula using a discrete Ito’s formula”, Stud. Sci. Math. Hungar. 45 (2008) 125134; doi:10.1556/SScMath.2007.1043.
[5] Ishimura, N. and Mita, Y., “A note on the optimal portfolio problem in discrete processes”, Kybernetika 45 (2009) 681688; http://www.kybernetika.cz/content/2009/4/681.
[6] Merton, R. C., “Option pricing when underlying stock returns are discontinuous”, J. Financial Econ. 3 (1976) 125144; doi:10.1016/0304-405X(76)90022-2.
[7] Revuz, D. and Yor, M., Continuous martingales and Brownian motion, 3rd edn (Springer, New York, 2005).
[8] Szabados, T., “An elemntary introduction to the Wiener process and stochastic integrals”, Stud. Sci. Math. Hungar. 31 (1996) 249297; arXiv:1008.1510v1.
[9] Yoshida, N., “Remarks on the transformation of Ito’s formula for jump-diffusion processes”, JSIAM Lett. 7 (2015) 2932; https://www.jstage.jst.go.jp/article/jsiaml/7/0/7_29/_article.
[10] Yoshida, N. and Ishimura, N., “Remarks on the optimal portfolio problem in discrete variables with multiple stochastic processes”, Int. J. Model. Optim. 6 (2016) 9699; doi:10.7763/IJMO.2016.V6.511.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

ON THE CONVERGENCE OF DISCRETE PROCESSES WITH MULTIPLE INDEPENDENT VARIABLES

  • N. ISHIMURA (a1) and N. YOSHIDA (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.