Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T13:01:12.866Z Has data issue: false hasContentIssue false

A NOTE ON PERIODIC SOLUTIONS OF A FORCED LIÉNARD-TYPE EQUATION

Published online by Cambridge University Press:  27 September 2010

LIE-HUI ZHANG
Affiliation:
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China (email: zhangliehui@vip.163.com)
YONG WANG*
Affiliation:
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China (email: zhangliehui@vip.163.com) School of Science, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China (email: ywangsc@gmail.com)
*
For correspondence; e-mail: ywangsc@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Criteria for guaranteeing the existence, uniqueness and asymptotic stability (in the sense of Liapunov) of periodic solutions of a forced Liénard-type equation under certain assumptions are presented. These criteria are obtained by application of the Manásevich–Mawhin continuation theorem, Floquet theory, Liapunov stability theory and some analysis techniques. An example is provided to demonstrate the applicability of our results.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Alshom, P., “Existence of limit cycles for generalized Liénard equations”, J. Math. Anal. Appl. 171 (1992) 242255.CrossRefGoogle Scholar
[2]Amann (ed.), H., Ordinary differential equations: an introduction to nonlinear analysis Transl. from the German by Gerhard Metzen (Walter de Gruyter, Berlin, 1990).CrossRefGoogle Scholar
[3]Blows, T. R. and Lloyd, N. G., “The number of small-amplitude limit cycles of Liénard equations”, Math. Proc. Cambridge Philos. Soc. 95 (1984) 359366.CrossRefGoogle Scholar
[4]Caubergh, M. and Dumortier, F., “Hilbert’s 16th problem for classical Liénard equations”, J. Differential Equations 244 (2008) 13591394.CrossRefGoogle Scholar
[5]Cesari (ed.), L., Asymptotic behaviour and stability problems in ordinary differential equations (Springer, Berlin, 1963).CrossRefGoogle Scholar
[6]Chen, H. and Li, Y., “Rate of decay of stable periodic solutions of Duffing equations”, J. Differential Equations 236 (2007) 493503.CrossRefGoogle Scholar
[7]Chen, X., Llibre, J. and Zhang, Z., “Sufficient conditions for the existence of at least n or exactly n limit cycles for the Liénard differential”, J. Differential Equations 242 (2007) 1123.CrossRefGoogle Scholar
[8]Cheung, W.-S. and Ren, J., “Periodic solutions for p-Laplacian Liénard equation with a deviating argument”, Nonlinear Anal. 59 (2004) 107120.Google Scholar
[9]Cheung, W.-S. and Ren, J., “On the existence of periodic solutions for p-Laplacian generalized Liénard equation”, Nonlinear Anal. 60 (2005) 6575.Google Scholar
[10]Coddington, E. A. and Levinson, N., Theory of ordinary differential equations (McGraw Hill, New York, 1955).Google Scholar
[11]Dai, X., Wen, Y., Li, P., Yang, J. and Zhang, G., “Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer”, Sensors and Actuators A: Physical 156 (2009) 350358.CrossRefGoogle Scholar
[12]Dumortier, F., “Compactification and desingularization of spaces of polynomial Liénard equations”, J. Differential Equations 224 (2006) 296313.CrossRefGoogle Scholar
[13]Dumortier, F. and Li, C., “Quadratic Liénard equations with quadratic damping”, J. Differential Equations 139 (1997) 4159.CrossRefGoogle Scholar
[14]Dumortier, F., Panazzolo, D. and Roussarie, R., “More limit cycles than expected in Liénard systems”, Proc. Amer. Math. Soc. 135 (2007) 18951904.CrossRefGoogle Scholar
[15]Écalle, J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac (Hermann, Paris, 1992).Google Scholar
[16]Esteban, J. R. and Vazquez, J. L., “On the equation of turbulent filtration in one-dimensional porous media”, Nonlinear Anal. 10 (1986) 13051325.CrossRefGoogle Scholar
[17]Gaines, R. and Mawhin, J., Coincidence degree, and nonlinear differential equations, Volume 568 of Lecture Notes in Mathematics (Springer, Berlin, 1977).CrossRefGoogle Scholar
[18]Gao, F. and Lu, S., “Existence of periodic solutions for a Liénard type p-Laplacian differential equation with a deviating argument”, Nonlinear Anal. 69 (2007) 47544763.CrossRefGoogle Scholar
[19]Gao, F. and Lu, S., “New results on the existence and uniqueness of periodic solutions for Liénard type p-Laplacian equation”, J. Franklin Inst. 345 (2008) 374381.CrossRefGoogle Scholar
[20]Gao, S. and Zhao, L., “Global asymptotic stability of generalized Liénard equation”, Chinese Sci. Bull. 40 (1995) 105109.Google Scholar
[21]Gasull, A. and Giacomini, H., “A new criterion for controlling the number of limit cycles of some generalized Liénard equations”, J. Differential Equations 185 (2002) 5473.CrossRefGoogle Scholar
[22]Gasull, A. and Torregrosa, J., “Small-amplitude limit cycles in Liénard systems via multiplicity”, J. Differential Equations 159 (1999) 186211.CrossRefGoogle Scholar
[23]Graef, J., “On the generalized Liénard equation with negative damping”, J. Differential Equations 12 (1972) 3462.CrossRefGoogle Scholar
[24]Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities (Cambridge University Press, London, 1964).Google Scholar
[25]Heidel, J. W., “A Liapunov function for a generalized Liénard equation”, J. Math. Anal. Appl. 39 (1972) 192197.CrossRefGoogle Scholar
[26]Herrero, M. A. and Vazquez, J. L., “On the propagation properties of a nonlinear degenerate parabolic equation”, Comm. Partial Differential Equations 7 (1982) 13811402.CrossRefGoogle Scholar
[27]Ilyashenko, Yu., Finiteness theorems for limit cycles, Volume 94 of Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 1991).CrossRefGoogle Scholar
[28]Jiang, J.-F., “The global stability of a class of second order differential equations”, Nonlinear Anal. 28 (1997) 855870.Google Scholar
[29]LaSale, J. P. and Lefschetz, S., Stability by Liapunov’s direct method (Academic Press, New York, 1961).Google Scholar
[30]Lazer, A. C., “On Schauder’s fixed point theorem and forced second order nonlinear oscillations”, J. Math. Anal. Appl. 21 (1968) 421425.CrossRefGoogle Scholar
[31]Lazer, A. C. and McKenna, P. J., “On the existence of stable periodic solutions of differential equations of Duffing type”, Proc. Amer. Math. Soc. 110 (1990) 125133.CrossRefGoogle Scholar
[32]Lefschetz, S., “Existence of periodic solutions for certain differential equations”, Proc. Natl. Acad. Sci. USA 29 (1943) 2932.CrossRefGoogle ScholarPubMed
[33]Levinson, N. and Smith, O. K., “A general equation for relaxation oscillations”, Duke. Math. J. 9 (1942) 382403.CrossRefGoogle Scholar
[34]Liénard, A., “Étude des oscillations entretenues”, Rev. Gen. Élect. 28 (1928) 901946.Google Scholar
[35]Liu, B., “Existence and uniqueness of periodic solutions for a kind of Liénard type p-Laplacian equation”, Nonlinear Anal. 69 (2008) 724729.CrossRefGoogle Scholar
[36]Liu, B., “Periodic solutions for Liénard type p-Laplacian equation with a deviating argument”, J. Comput. Appl. Math. 214 (2008) 1318.CrossRefGoogle Scholar
[37]Liu, B. and Huang, L., “Existence and uniqueness of periodic solutions for a kind of Liénard equation with a deviating argument”, Appl. Math. Lett. 21 (2008) 5662.CrossRefGoogle Scholar
[38]Lu, S., “Existence of periodic solutions to a p-Laplacian Liénard differential equation with a deviating argument”, Nonlinear Anal. 68 (2008) 14531461.CrossRefGoogle Scholar
[39]Lu, S. and Ge, W., “Periodic solutions for a kind of Liénard equation with a deviating argument”, J. Math. Anal. Appl. 289 (2004) 231243.CrossRefGoogle Scholar
[40]Manásevich, R. and Mawhin, J., “Periodic solutions for nonlinear systems with p-Laplacian-like operators”, J. Differential Equations 145 (1998) 367393.CrossRefGoogle Scholar
[41]Mawhin, J., “An extension of a theorem of A.C. Lazer on forced nonlinear oscillations”, J. Math. Anal. Appl. 40 (1972) 2029.CrossRefGoogle Scholar
[42]Mawhin, J., “Periodic solutions of some vector retarded functional differential equations”, J. Math. Anal. Appl. 45 (1974) 588603.CrossRefGoogle Scholar
[43]Mitcheson, P. D., Green, T. C., Yeatman, E. M. and Holmes, A. S., “Architectures for vibration driven micropower generators”, J. Microelectromechanical Systems 13 (2004) 429440.CrossRefGoogle Scholar
[44]Nayfeh, A. H. and Mook, D., Nonlinear oscillations (Wiley, New York, 1979).Google Scholar
[45]Ortega, R., “Stability and index of periodic solutions of an equation of Duffing type”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (7) 3 (1989) 533546.Google Scholar
[46]Qian, C., “On global asymptotic stability of second order nonlinear differential systems”, Nonlinear Anal. 22 (1994) 823833.CrossRefGoogle Scholar
[47]Reissig, R., Sansone, G. and Conti, R., Qualitative theorie nichtlinearer differentialgleichungen (Cremonese, Roma, 1963).Google Scholar
[48]Sansone, G. and Conti, R., Equazioni differenziali nonlineari (Cremonese, Roma, 1956).Google Scholar
[49]Seifert, G., “Global asymptotic behavior of solutions of positively damped Liénard equations”, Ann. Polon. Math. 51 (1990) 283288.CrossRefGoogle Scholar
[50]Sugie, J., “Liénard dynamics with an open limit orbit”, NoDEA 8 (2001) 8397.CrossRefGoogle Scholar
[51]Sugie, J. and Amano, Y., “Global asymptotic stability of nonautonomous systems of Liénard type”, J. Math. Anal. Appl. 289 (2004) 673690.CrossRefGoogle Scholar
[52]Sugie, J., Chen, D.-L. and Matsunaga, H., “On global asymptotic stability of systems of Liénard type”, J. Math. Anal. Appl. 219 (1998) 140164.CrossRefGoogle Scholar
[53]van der Pol, B., “Forced oscillations in a circuit with nonlinear resistance”, London, Edinburgh and Dublin Phil. Mag. (3) 65 (1927).Google Scholar
[54]Wang, Y., “New results of periodic solutions for a Rayleigh equation with a deviating argument”, Z. Angew. Math. Phys. 60 (2009) 583593.CrossRefGoogle Scholar
[55]Wang, Y., “Novel existence and uniqueness criteria for periodic solutions of a Duffing typep-Laplacian equation”, Appl. Math. Lett. 23 (2010) 436439.CrossRefGoogle Scholar
[56]Wang, Y. and Tian, J., “Periodic solutions for a Liénard equation with two deviating arguments”, Electron. J. Differ. Equ. no. 140 2009 (2009) 112.Google Scholar
[57]Wiandt, T., “A counterexample to a conjecture on the global asymptotic stability for Liénard equation”, Appl. Anal. 56 (1995) 207212.CrossRefGoogle Scholar
[58]Williams, C. B., Shearwood, C., Harradine, M. A., Mellor, P. H., Birch, T. S. and Yates, R. B., “Development of an electromagnetic microgenerator”, IEE Proc.: Circuits, Devices Syst. l48 (2001) 337342.Google Scholar
[59]Xiong, W., Zhou, Q., Xiao, B., Wang, Y. and Long, F., “Periodic solutions for a kind of Liénard equation with two deviating arguments”, Nonlinear Anal. Real World Appl. 8 (2007) 787796.CrossRefGoogle Scholar
[60]Yoshizawa, T., Stability theory by Liapunov’s second method (Math. Soc. Japan, Tokyo, 1966).Google Scholar
[61]Zhang, Z., Ding, T., Huang, W. and Dong, Z., Qualitative theory of differential equations, Volume 101 of Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 1992).Google Scholar
[62]Zhou, Q. and Long, F., “Existence and uniqueness of periodic solutions for a kind of Liénard equation with two deviating arguments”, J. Comput. Appl. Math. 206 (2007) 11271136.CrossRefGoogle Scholar
[63]Zitan, A. and Ortega, R., “Existence of asymptotically stable periodic solutions of a forced equation of Liénard type”, Nonlinear Anal. 22 (1994) 9931003.CrossRefGoogle Scholar