Skip to main content Accessibility help
×
Home

A NOTE ON MARKOVIAN QUANTUM DYNAMICS

  • L. CHEN (a1) (a2), H. X. MENG (a1), H. X. CAO (a1), Y. F. HUANG (a1) (a2) and Y. YANG (a1) (a3)...

Abstract

Based on the definition of divisibility of Markovian quantum dynamics, we discuss the Markovianity of tensor products, multiplications and some convex combinations of Markovian quantum dynamics. We prove that the tensor product of two Markovian dynamics is also a Markovian dynamics and propose a new witness of non-Markovianity.

Copyright

Corresponding author

References

Hide All
[1] Ali, Md. M., Lo, P. Y., Tu, M. W.-Y. and Zhang, W. M., “Non-Markovianity measure using two-time correlation functions”, Phys. Rev. A 92 (2015) 062306; doi:10.1103/PhysRevA.92.062306.
[2] Breuer, H. P., “Foundations and measures of quantum non-Markovianity”, J. Phys. B 45 (2012) 154001; doi:10.1088/0953-4075/45/15/154001.
[3] Breuer, H. P., Laine, E. M. and Piilo, J., “Measure for the degree of non-Markovian behavior of quantum processes in open systems”, Phys. Rev. Lett. 103 (2009) 210401; doi:10.1103/PhysRevLett.103.210401.
[4] Bylicka, B., Chruściński, D. and Maniscalco, S., “Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective”, Sci. Rep. 4 (2014) 5720; doi:10.1038/srep05720.
[5] Chin, A. W., Huelga, S. F. and Plenio, M. B., “Quantum metrology in non-Markovian environments”, Phys. Rev. Lett. 109 (2012) 233601; doi:10.1103/PhysRevLett.109.233601.
[6] Chruściński, D. and Kossakowski, A., “Witnessing non-Markovianity of quantum evolution”, Eur. Phys. J. D 68 (2014) 7; doi:10.1140/epjd/e2013-40171-9.
[7] Chruściński, D. and Maniscalco, S., “Degree of non-Markovianity of quantum evolution”, Phys. Rev. Lett. 112 (2014) 120404; doi:10.1103/PhysRevLett.112.120404.
[8] Chruściński, D. and Wudarski, F. A., “Non-Markovian random unitary qubit dynamics”, Phys. Lett. A 377 (2013) 14251429; doi:10.1016/j.physleta.2013.04.020.
[9] Chruściński, D. and Wudarski, F. A., “Non-Markovianity degree for random unitary evolution”, Phys. Rev. A 91 (2015) 012104; doi:10.1103/PhysRevA.91.012104.
[10] Hall, M. J. W., Cresser, J. D., Li, L. and Andersson, E., “Canonical form of master equations and characterization of non-Markovianity”, Phys. Rev. A 89 (2014) 042120; doi:10.1103/PhysRevA.89.042120.
[11] Hou, S. C., Liang, S. L. and Yi, X. X., “Non-Markovianity and memory effects in quantum open systems”, Phys. Rev. A 91 (2015) 012109; doi:10.1103/PhysRevA.91.012109.
[12] Lu, X. M., Wang, X. and Sun, C. P., “Quantum Fisher information flow and non-Markovian processes of open systems”, Phys. Rev. A 82 (2010) 042103; doi:10.1103/PhysRevA.82.042103.
[13] Luo, S., Fu, S. and Song, H., “Quantifying non-Markovianity via correlations”, Phys. Rev. A 86 (2012) 044101; doi:10.1103/PhysRevA.86.044101.
[14] Nielsen, M. A. and Chuang, I. L., Quantum computation and quantum information, 10th anniversary edn (Cambridge University Press, New York, 2010); doi:10.1017/CBO9780511976667.
[15] Raginsky, M., “A fidelity measure for quantum channels”, Phys. Lett. A 290 (2001) 1118; doi:10.1016/S0375-9601(01)00640-5.
[16] Rajagopal, A. K., Usha Devi, A. R. and Rendell, R. W., “Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms”, Phys. Rev. A 82 (2010) 042107; doi:10.1103/PhysRevA.82.042107.
[17] Rivas, Á. and Huelga, S. F., Open quantum systems: an introduction (Springer, Heidelberg, 2012); doi:10.1007/978-3-642-23354-8.
[18] Rivas, Á., Huelga, S. F. and Plenio, M. B., “Entanglement and non-Markovianity of quantum evolutions”, Phys. Rev. Lett. 105 (2010) 050403; doi:10.1103/PhysRevLett.105.050403.
[19] Rivas, Á., Huelga, S. F. and Plenio, M. B., “Quantum non-Markovianity: characterization, quantification and detection”, Rep. Progr. Phys. 77 (2014) 094001; doi:10.1088/0034-4885/77/9/094001.
[20] Shabani, A., Roden, J. and Whaley, K. B., “Continuous measurement of a non-Markovian open quantum system”, Phys. Rev. Lett. 112 (2014) 113601; doi:10.1103/PhysRevLett.112.113601.
[21] Vasile, R., Olivares, S., Paris, M. G. A. and Maniscalco, S., “Continuous-variable quantum key distribution in non-Markovian channels”, Phys. Rev. A 83 (2011) 042321; doi:10.1103/PhysRevA.83.042321.
[22] Wolf, M. M., Eisert, J., Cubitt, T. S. and Cirac, J. I., “Assessing non-Markovian quantum dynamics”, Phys. Rev. Lett. 101 (2008) 150402; doi:10.1103/PhysRevLett.101.150402.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A NOTE ON MARKOVIAN QUANTUM DYNAMICS

  • L. CHEN (a1) (a2), H. X. MENG (a1), H. X. CAO (a1), Y. F. HUANG (a1) (a2) and Y. YANG (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed