Skip to main content Accessibility help
×
Home

Multiserver queueing systems with retrials and losses

  • Vyacheslav M. Abramov (a1)

Abstract

The interest in retrial queueing systems mainly lies in their application to telephone systems. This paper studies multiserver retrial queueing systems with n servers. The arrival process is a quite general point process. An arriving customer occupies one of the free servers. If upon arrival all servers are busy, then the customer waits for his service in orbit, and after a random time retries in order to occupy a server. The orbit has one waiting space only, and an arriving customer, who finds all servers busy and the waiting space occupied, is lost from the system. Time intervals between possible retrials are assumed to have arbitrary distribution (the retrial scheme is explained more precisely in the paper). The paper provides analysis of this system. Specifically the paper studies the optimal number of servers to decrease the loss proportion to a given value. The representation obtained for the loss proportion enables us to solve the problem numerically. The algorithm for numerical solution includes effective simulation, which meets the challenge of a rare events problem in simulation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multiserver queueing systems with retrials and losses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multiserver queueing systems with retrials and losses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multiserver queueing systems with retrials and losses
      Available formats
      ×

Copyright

References

Hide All
[1]Abramov, V. M., “Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution”, Ann. Oper. Res. 141 (2006) 1950.
[2]Artalejo, J. R., “Accessible bibliography on retrial queues”, Math. Comput. Model. 30 (1999) 16.
[3]Artalejo, J. R. and Falin, G. I., “Standard and retrial queueing systems. A comparative analysis”, Mat. Complut. 15 (2002) 101129.
[4]Atencia, I. and Phong, N. H., “A queueing system under LCFS PR discipline with Markovian arrival process and general times of searching for service”, Investig. Oper. 25 (2004) 293298.
[5]Bharucha-Reid, A. T., Elements of the theory of Markov processes and their application (McGraw-Hill, New York, 1960).
[6]Bocharov, P. P., D'Apice, C., Manzo, R. and Phong, N. H., “On retrial single-server queueing system with finite buffer and multivariate Poisson flow”, Prob. Inf. Transm. 37 (2001) 397406.
[7]Bocharov, P. P., Phong, N. H. and Atencia, I., “Retrial queueing systems with several input flows”, Investig. Oper. 22 (2001) 135143.
[8]Cohen, J. W., “The full availability group of trunks with an arbitrary distribution of interarrival times and negative exponential holding time distribution”, Bull. Belg. Math. Soc. Simon Stevin 31 (1957) 169181.
[9]Dellacherie, C., Capacites et Processus Stochastiques (Springer, Berlin, 1972).
[10]Falin, G. I., “A survey on retrial queues”, Queueing Syst. 7 (1990) 127168.
[11]Heidelberger, P., “Fast simulation of rare events in queueing and reliability models”, ACM Trans. Model. Comput. Sim. 5 (1995) 4385.
[12]Jacod, J. and Shiryayev, A. N., Limit theorems for stochastic processes (Springer, Berlin, 1987).
[13]Kovalenko, I. N., “The loss probability in M/G/m queueing systems with T-retrials in light traffic”, Dopovidi NAN Ukrainy (Ukrainian Academy of Sciences), Ser. A 5 (2002) 7780.
[14]Liptser, R. S. and Shiryayev, A. N., Statistics of random processes. Vols 1, 2. (Springer, Berlin, 1977/1978).
[15]Liptser, R. S. and Shiryayev, A. N., Theory of martingales (Kluwer, Dordrecht, 1989).
[16]Mandelbaum, A., Massey, W. A. and Reiman, M. I., “Strong approximation for Markovian service network”, Queueing Syst. 30 (1998) 149201.
[17]Mandelbaum, A., Massey, W. A., Reiman, M. I., Stolyar, A. and Rider, B., “Queue-lengths and waiting times for multiserver queues with abandonment and retrials“, Telecommunication Syst. 21 (2002) 149171.
[18]Melamed, B. and Rubinstein, R. Y., Modern simulation and modelling (John Wiley, Chichester, 1998).
[19]Palm, C., “Intensitätschwankungen im Fernsprechverkehr”, Ericsson Technics 44 (1943) 1189.
[20]Pollaczek, F., “Generalisation de la théorie probabiliste des systèmes telephoniques sans dispositif d'attente”, C.R. Math. Acad. Sci. Paris 236 (1953) 14691470.
[21]Rubalskii, G. B., “The search of an extremum of unimodal function of one variable in an unbounded set”, Comput. Math. Math. Phys. 22 (1982) 815. Transl. frm Russian: Zh. Vychisl. Mat. Mat. Fiz. 22 (1982), 10–16, 251.
[22]Rubinstein, R. Y. and Shapiro, A., Discrete event systems: Sensitivity analysis and stochastic optimization by the score function method (John Wiley, Chichester, 1993).
[23]Shahabuddin, P., “Rare event simulation in stochastic models”, in Proceedings of the 1995 Winter Simulation Conference (eds. Alexopoulos, C., Kang, K., Lilegdon, W. R. and Goldsman, D.), (IEEE Press, 1995) 178185.
[24]Takács, L., “On a probability problem concerning telephone traffic”, Acta Math. Hungar. 8 (1957) 319324.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Multiserver queueing systems with retrials and losses

  • Vyacheslav M. Abramov (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed