Skip to main content Accessibility help
×
Home

A MULTIPHASE MULTISCALE MODEL FOR NUTRIENT-LIMITED TISSUE GROWTH, PART II: A SIMPLIFIED DESCRIPTION

  • E. C. HOLDEN (a1), S. J. CHAPMAN (a2), B. S. BROOK (a1) and R. D. O’DEA (a1)

Abstract

In this paper, we revisit our previous work in which we derive an effective macroscale description suitable to describe the growth of biological tissue within a porous tissue-engineering scaffold. The underlying tissue dynamics is described as a multiphase mixture, thereby naturally accommodating features such as interstitial growth and active cell motion. Via a linearization of the underlying multiphase model (whose nonlinearity poses a significant challenge for such analyses), we obtain, by means of multiple-scale homogenization, a simplified macroscale model that nevertheless retains explicit dependence on both the microscale scaffold structure and the tissue dynamics, via so-called unit-cell problems that provide permeability tensors to parameterize the macroscale description. In our previous work, the cell problems retain macroscale dependence, posing significant challenges for computational implementation of the eventual macroscopic model; here, we obtain a decoupled system whereby the quasi-steady cell problems may be solved separately from the macroscale description. Moreover, we indicate how the formulation is influenced by a set of alternative microscale boundary conditions.

Copyright

Corresponding author

References

Hide All
[1] Alarcón, T., Owen, M. R., Byrne, H. M. and Maini, P. K., “Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy”, Comput. Math. Methods Med. 7 (2006) 85119; doi:10.1080/10273660600968994.
[2] Bensoussan, A., Lions, J.-L. and Papanicolaou, G., Asymptotic analysis for periodic structures, Volume 5 of Stud. in Math. Appl. (North-Holland, Amsterdam, 1978); ISBN: 9780080875262.
[3] Bowen, R. M., “Incompressible porous media models by use of the theory of mixtures”, Internat. J. Engrg. Sci. 18 (1980) 11291148; doi:10.1016/0020-7225(80)90114-7.
[4] Collis, J., Brown, D. L., Hubbard, M. E. and O’Dea, R. D., “Effective equations governing an active poroelastic medium”, Proc. R. Soc. Lond. Ser. A 473 (2017) 20160755; doi:10.1098/rspa.2016.0755.
[5] Collis, J., Hubbard, M. E. and O’Dea, R. D., “Computational modelling of multiscale, multiphase fluid mixtures with application to tumour growth”, Comput. Methods Appl. Mech. Engrg. 309 (2016) 554578; doi:10.1016/j.cma.2016.06.015.
[6] Collis, J., Hubbard, M. E. and O’Dea, R. D., “A multi-scale analysis of drug transport and response for a multi-phase tumour model”, European J. Appl. Math. 28 (2017) 499534; doi:10.1017/S0956792516000413.
[7] Davit, Y. et al. , “Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare?”, Adv. Water Resour. 62 (2013) 178206; doi:10.1016/j.advwatres.2013.09.006.
[8] Drew, D. A. and Passman, S. L., Theory of multicomponent fluids, Volume 135 of Appl. Math. Sci. (Springer-Verlag, Berlin, Heidelberg, 2006) 146.; doi:10.1007/b97678.
[9] Holden, E. C., Collis, J., Brook, B. S. and O’Dea, R. D., “A multiphase multiscale model for nutrient limited tissue growth”, ANZIAM J. 59 (2018) 499532; doi:10.1017/S1446181118000044.
[10] Irons, L., Collis, J. and O’Dea, R. D., “Microstructural influences on growth and transport in biological tissue: a multiscale description”, in: Microscale transport modelling in biological processes (Academic Press, Elsevier, London, 2017) 311334.; doi:10.1016/B978-0-12-804595-4.00012-2.
[11] Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C. and Shah, R. N., “Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications”, ACS Nano 9 (2015) 46364648; doi:10.1021/acsnano.5b01179.
[12] Keller, J. B., “Darcy’s law for flow in porous media and the two-space method”, in: Nonlinear partial differential equations in engineering and applied sciences, Volume 54 of Lect. Notes in Pure Appl. Math. (Marcel Dekker, New York, 1980) 429443.; doi:10.1201/9780203745465.
[13] Lemon, G., King, J. R., Byrne, H. M., Jensen, O. and Shakesheff, K., “Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory”, J. Math. Biol. 52 (2006) 571594; doi:10.1007/s00285-005-0363-1.
[14] Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V. and Lowengrub, J., “Multiscale modelling and nonlinear simulation of vascular tumour growth”, J. Math. Biol. 58 (2009) 765798; doi:10.1007/s00285-008-0216-9.
[15] Marle, C., “On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media”, Internat. J. Engrg. Sci. 20 (1982) 643662; doi:10.1016/0020-7225(82)90118-5.
[16] Marle, C., “The effect of weak inertia on flow through a porous medium”, J. Fluid Mech. 222 (1991) 647663; doi:10.1017/S0022112091001258.
[17] Mei, C. C. and Vernescu, B., Homogenization methods for multiscale mechanics (World Scientific, Singapore, 2010); doi:10.1142/7427.
[18] Miller, E. D., Fisher, G. W., Weiss, L. E., Walker, L. M. and Campbell, P. G., “Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin”, Biomaterials 27 (2006) 22132221; doi:10.1016/j.biomaterials.2005.10.021.
[19] Miller, E. D., Li, K., Kanade, T., Weiss, L. E., Walker, L. M. and Campbell, P. G., “Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors”, Biomaterials 32 (2011) 27752785; doi:10.1016/j.biomaterials.2010.12.005.
[20] O’Dea, R. D., Nelson, M., El Haj, A., Waters, S. and Byrne, H. M., “A multiscale analysis of nutrient transport and biological tissue growth in vitro”, Math. Med. Biol. 32 (2015) 345366; doi:10.1093/imammb/dqu015.
[21] Osborne, J. M., Walter, A., Kershaw, S. K., Mirams, G. R., Pathmanathan, P., Gavaghan, D., Jensen, O. E., Maini, P. K. and Byrne, H. M., “A hybrid approach to multi-scale modelling of cancer”, Philos. Trans. R. Soc. Lond. Ser. A 368 (2010) 50135028; doi:10.1098/rsta.2010.0173.
[22] Pavliotis, G. A. and Stuart, A., Multiscale methods: averaging and homogenization, Volume 53 of Texts in Appl. Math. (Springer-Verlag, New York, 2008); doi:10.1007/978-0-387-73829-1.
[23] Penta, R., Ambrosi, D. and Shipley, R. J., “Effective governing equations for poroelastic growing media”, Quart. J. Mech. Appl. Math. 67 (2014) 6991; doi:10.1093/qjmam/hbt024.
[24] Shipley, R. J. and Chapman, S. J., “Multiscale modelling of fluid and drug transport in vascular tumours”, Bull. Math. Biol. 72 (2010) 14641491; doi:10.1007/s11538-010-9504-9.
[25] Visser, J., Melchels, F. P., Jeon, J. E., van Bussel, E. M., Kimpton, L. S., Byrne, H. M., Dhert, W. J., Dalton, P. D., Hutmacher, D. W. and Malda, J., “Reinforcement of hydrogels using three-dimensionally printed microfibres”, Nat. Commun. 6 (2015) 146; doi:10.1038/ncomms7933.
[26] Wen, J. H., Choi, O., Taylor-Weiner, H., Fuhrmann, A., Karpiak, J. V., Almutairi, A. and Engler, A. J., “Haptotaxis is cell type specific and limited by substrate adhesiveness”, Cell. Mol. Bioeng. 8 (2015) 530542; doi:10.1007/s12195-015-0398-3.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A MULTIPHASE MULTISCALE MODEL FOR NUTRIENT-LIMITED TISSUE GROWTH, PART II: A SIMPLIFIED DESCRIPTION

  • E. C. HOLDEN (a1), S. J. CHAPMAN (a2), B. S. BROOK (a1) and R. D. O’DEA (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed