Skip to main content Accessibility help
×
Home

LYAPUNOV EXPONENTS OF THE KURAMOTO–SIVASHINSKY PDE

Abstract

The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence.

Copyright

Corresponding author

References

Hide All
[1] Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 2. Numerical application”, Meccanica 15 (1980) 2130; doi:10.1007/BF02128237.
[2] Chertovskih, R., Chimanski, E. V. and Rempel, E. L., “Route to hyperchaos in Rayleigh–Bénard convection”, Europhys. Lett. 112 (14001); doi:10.1209/0295-5075/112/14001.
[3] Chicone, C., Ordinary differential equations with applications, Volume 34 Texts in Applied Mathematics (Springer, New York, 2006); doi:10.1007/0-387-35794-7.
[4] Cross, M. C. and Hohenberg, P. C., “Hohenberg. Pattern formation outside of equilibrium”, Rev. Mod. Phys. 65 (1993) 8511112; doi:10.1103/RevModPhys.65.851.
[5] Cvitanović, P., Davidchack, R. and Siminos, E., “On the state space geometry of the Kuramoto–Sivashinsky flow in a periodic domain”, SIAM J. Appl. Dyn. Syst. 9 (2010) 133; doi:10.1137/070705623.
[6] Dankowicz, H., Holmes, P., Berkooz, G. and Elezgaray, J., “Local models of spatio-temporally complex fields”, Physica D 90 (1996) 387407; doi:10.1016/0167-2789(95)00245-6.
[7] Dieci, L., Russell, R. and Van Vleck, E., “On the computation of Lyapunov exponents for continuous dynamical systems”, SIAM J. Numer. Anal. 34 (1997) 402423; doi:10.1137/S0036142993247311.
[8] Eckmann, J.-P. and Ruelle, D., “J. Ergodic theory of chaos and strange attractors”, Rev. Mod. Phys. 57 (1985) 617656; doi:10.1103/RevModPhys.57.617.
[9] Eguíluz, V. M., Alstrøm, P., Hernández-García, E. and Piro, O., “Average patterns of spatiotemporal chaos: a boundary effect”, Phys. Rev. E 59 (1999) 28222825; doi:10.1103/PhysRevE.59.2822.
[10] Foias, C., Nicolaenko, B., Sell, G. R. and Temam, R., Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, Technical Report, University of Minnesota Digital Conservancy, 1986, http://hdl.handle.net/11299/4494.
[11] Geist, K., Parlitz, U. and Lauterborn, W., “Comparison of different methods for computing Lyapunov exponents”, Prog. Theor. Phys. 83 (1990) 875893; doi:10.1143/PTP.83.875.
[12] Grassberger, P. and Procaccia, I., “Measuring the strangeness of strange attractors”, Physica D 9 (1983) 189208; doi:10.1016/0167-2789(83)90298-1.
[13] Greenside, H. S., “Spatiotemporal chaos in large systems: the scaling of complexity with size”, Technical Report, 1996; https://arxiv.org/abs/chao-dyn/9612004.
[14] Hassanaly, M. and Raman, V., “Ensemble-LES analysis of perturbation response of turbulent partially-premixed flames”, P. Combust Inst. 37 (2018) 22492257; doi:10.1016/j.proci.2018.06.209.
[15] Hohenberg, P. C. and Shraiman, B. I., “Chaotic behavior of an extended system”, Physica D 37 (1989) 109115; doi:10.1016/0167-2789(89)90121-8.
[16] Hyman, J. M. and Nicolaenko, B., “The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems”, Physica D 18 (1986) 113126; doi:10.1016/0167-2789(86)90166-1.
[17] Hyman, J. M., Nicolaenko, B. and Zaleski, S., “Order and complexity in the Kuramoto–Sivashinsky model of weakly turbulent interfaces”, Physica D 23 (1986) 265292; doi:10.1016/0167-2789(86)90136-3.
[18] Kaplan, J. L. and Yorke, J. A., “Chaotic behavior of multidimensional difference equations”, in: Functional differential equations and approximation of fixed points (eds Peitgen, H.-O. and Walther, H.-O.), (Springer, Berlin, 1979) 204227; doi:10.1007/BFb0064319.
[19] Keefe, L., Moin, P. and Kim, J., “The dimension of attractors underlying periodic turbulent Poiseuille flow”, J. Fluid Mech. 242 (1992) 129; doi:10.1017/S0022112092002258.
[20] Kevrekidis, I. G. and Samaey, G., “Equation-free multiscale computation: algorithms and applications”, Annu. Rev. Phys. Chem. 60 (2009) 321344; doi:10.1146/annurev.physchem.59.032607.093610.
[21] Kuramoto, Y. and Tsuzuki, T., “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Prog. Theor. Phys. 55 (1976) 356369; doi:10.1143/PTP.55.356.
[22] Lan, Y. and Cvitanović, P., “Unstable recurrent patterns in Kuramoto–Sivashinsky dynamics”, Phys. Rev. E 78 (2008) 026208; doi:10.1103/PhysRevE.78.026208.
[23] Manneville, P., “Liapounov exponents for the Kuramoto–Sivashinsky model”, in: Macroscopic modelling of turbulent flows (eds Frisch, U., Keller, J. B., Papanicolaou, G. C. and Pironneau, O.), (Springer, Berlin, 1985) 319326; doi:10.1007/3-540-15644-5 26.
[24] Pomeau, Y. and Zaleski, S., “The Kuramoto–Sivashinsky equation: a caricature of hydrodynamic turbulence?” in: Macroscopic modelling of turbulent flows (eds Frisch, U., Keller, J. B., Papanicolaou, G. C. and Pironneau, O.), (Springer, Berlin, 1985) 296303; doi:10.1007/3-540-15644-5 23.
[25] Rempel, E. L., Chian, A. C.-L., Macau, E. E. N. and Rosa, R. R., “Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto–Sivashinsky equation”, Chaos 14 (2004) 545556; doi:10.1063/1.1759297.
[26] Ruelle, D., “Ergodic theory of differentiable dynamical systems”, Publ. Math. Inst. Hautes Études Sci. 50 (1979) 2758; doi:10.1007/bf02684768.
[27] Ruelle, D. and Takens, F., “On the nature of turbulence”, Commun. Math. Phys. 20 (1971) 167192; doi:10.1007/BF01646553.
[28] Shimada, I. and Nagashima, T., “A numerical approach to ergodic problem of dissipative dynamical systems”, Prog. Theor. Phys. 61 (1979) 16051616; doi:10.1143/PTP.61.1605.
[29] Sivashinsky, G. I., “Nonlinear analysis of hydrodynamic instability in laminar flames–I. Derivation of basic equations”, Acta Astron. 4 (1977) 11771206; doi:10.1016/0094-5765(77)90096-0.
[30] Sivashinsky, G. I. and Michelson, D. M., “On irregular wavy flow of a liquid film down a vertical plane”, Prog. Theor. Phys. 63 (1980) 21122114; doi:10.1143/PTP.63.2112.
[31] Skokos, C., “The Lyapunov characteristic exponents and their computation”, in: Dynamics of small solar system bodies and exoplanets (eds Souchay, J. J. and Dvorak, R.), (Springer, Berlin, 2010) 63135; doi:10.1007/978-3-642-04458-8_2.
[32] Sprott, J. C., Elegant chaos: algebraically simple chaotic flows (World Scientific, Singapore, 2010); doi:10.1142/7183.
[33] Tajima, S. and Greenside, H. S., “Microextensive chaos of a spatially extended system”, Phys. Rev. E 66 (2002) 017205; doi:10.1103/PhysRevE.66.017205.
[34] Takens, F., Detecting strange attractors in turbulence, Lect. Notes in Math. (Springer, Berlin, 1981) 366381; doi:10.1007/bfb0091924.
[35] Wittenberg, R. W. and Holmes, P., “Scale and space localization in the Kuramoto–Sivashinsky equation”, Chaos 9 (1999) 452465; doi:10.1063/1.166419.
[36] Xu, M., “Spatiotemporal chaos in large systems driven far-from-equilibrium: connecting theory with experiment”, Ph. D. Thesis, Virginia Polytechnic Institute and State University, 2017. https://vtechworks.lib.vt.edu/handle/10919/79499.
[37] Yang, H.-L., Takeuchi, K. A., Ginelli, F., Chaté, H. and Radons, G., “Hyperbolicity and the effective dimension of spatially extended dissipative systems”, Phys. Rev. Lett. 102 (2009) 074102; doi:10.1103/PhysRevLett.102.074102.21.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

LYAPUNOV EXPONENTS OF THE KURAMOTO–SIVASHINSKY PDE

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed