Skip to main content Accessibility help
×
Home

A HYBRID MODEL FOR STUDYING SPATIAL ASPECTS OF INFECTIOUS DISEASES

  • BENJAMIN J. BINDER (a1), JOSHUA V. ROSS (a1) and MATTHEW J. SIMPSON (a2)

Abstract

We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A HYBRID MODEL FOR STUDYING SPATIAL ASPECTS OF INFECTIOUS DISEASES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A HYBRID MODEL FOR STUDYING SPATIAL ASPECTS OF INFECTIOUS DISEASES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A HYBRID MODEL FOR STUDYING SPATIAL ASPECTS OF INFECTIOUS DISEASES
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Alarcón, T., Byrne, H. M. and Maini, P. K., “A cellular automaton model for tumour growth in inhomogeneous environment”, J. Theoret. Biol. 225 (2003) 257274; doi:10.1016/S0022-5193(03)00244-3.
[2]Anderson, R. M. and May, R. M., Infectious diseases of humans (Oxford University Press, Oxford, 1991).
[3]Beauchemin, C., Samuel, J. and Tuszynski, J., “A simple cellular automaton model for influenza A viral infections”, J. Theor. Biol. 232 (2005) 223234; doi:10.1016/j.jtbi.2004.08.001.
[4]Binder, B. J. and Landman, K. A., “Exclusion processes on a growing domain”, J. Theor. Biol. 259 (2009) 541551; doi:10.1016/j.jtbi.2009.04.025.
[5]Binder, B. J. and Landman, K. A., “Quantifying evenly distributed states in exclusion and nonexclusion processes”, Phys. Rev. E. 83 (2011) 041914; doi:10.1103/PhysRevE.83.041914.
[6]Binder, B. J., Landman, K. A., Newgreen, D. F., Simkin, J. E., Takahashi, Y. and Zhang, D., “Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut”, Bull. Math. Biol. 74 (2012) 474490; doi:10.1007/s11538-011-9703-z.
[7]Binder, B. J., Landman, K. A., Simpson, M. J., Mariani, M. and Newgreen, D. F., “Modeling proliferative tissue growth: a general approach and an avian case study”, Phys. Rev. E. 78 (2008) 031912; doi:10.1103/PhysRevE.78.031912.
[8]Bobashev, G. V., Goedecke, M. D., Yu, F. and Epstein, J. M., “A hybrid epidemic model: combining the advantages of agent-based and equation-based approaches”, in: Proceedings of the 2007 Winter Simulation Conference (ed. Henderson, S.), (IEEE, Washington DC, 2007), 15321537; doi:10.1109/WSC.2007.4419767.
[9]Chowdhury, D., Schadschneider, A. and Nishinari, K., “Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms”, Phys. Life Rev. 2 (2005) 318352; doi:10.1016/j.plrev.2005.09.001.
[10]Chung, C. A., Lin, T.-H., Chen, S.-D. and Huang, H.-I., “Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs”, J. Theor. Biol. 262 (2010) 267278; doi:10.1016/j.jtbi.2009.09.031.
[11]Dallon, J. C. and Othmer, H. G., “A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum”, Phil. Trans. R. Soc. Lond. B 352 (1997) 391417; doi:10.1098/rstb.1997.0029.
[12]Dietz, K., “Epidemics and rumours: a survey”, J. R. Stat. Soc. A 130 (1967) 505528; doi:10.2307/2982521.
[13]Diggle, P. J., Statistical analysis of spatial point patterns (Academic Press, London, 1983).
[14]Erban, R. and Chapman, S. J., “Time scale of random sequential adsorption”, Phys. Rev. E 75 (2007) 041116; doi:10.1103/PhysRevE.75.041116.
[15]Franz, B. and Erban, R., “Hybrid modelling of individual movement and collective behaviour”, in: Dispersal, individual movement and spatial ecology: a mathematical perspective (eds Lewis, M., Maini, P. K. and Petrovskii, S. V.), (Springer) in press.
[16]Guo, Z., Sloot, P. M. A. and Tay, J. C., “A hybrid agent-based approach for modeling microbiological systems”, J. Theor. Biol. 255 (2008) 163175; doi:10.1016/j.jtbi.2008.08.008.
[17]Heppenstall, A., Evans, A. and Birkin, M., “Using hybrid agent-based systems to model spatially-influenced retail markets”, J. Artificial Soc. Social Simulation 9 (2006) 2; http://jasss.soc.surrey.ac.uk/9/3/2.html.
[18]Hickson, R. I., Mercer, G. N. and Lokuge, K. M., “A metapopulation model of tuberculosis transmission with a case study from high to low burden areas”, PLoS ONE 7 (2012) e34411; doi:10.1371/journal.pone.0034411.
[19]Jones, S. W., “The enhancement of mixing by chaotic advection”, Phys. Fluids A 3 (1991) 10811086; doi:10.1063/1.858089.
[20]Keeling, M. J. and Rohani, P., Modeling infectious diseases in humans and animals (Princeton University Press, Princeton, NJ, 2008).
[21]Keeling, M. J. and Ross, J. V., “On methods for studying stochastic disease dynamics”, J. R. Soc. Interface 5 (2008) 171181; doi:10.1098/rsif.2007.1106.
[22]Kelly, H. A., Mercer, G. N., Fielding, J. E., Dowse, G. K., Glass, K., Carcione, D., Grant, K. A., Effler, P. V. and Lester, R. A., “Pandemic (H1N1) 2009 influenza community transmission was established in one Australian state when the virus was first identified in North America”, PLoS ONE 5 (2010) e11341; doi:10.1371/journal.pone.0011341.
[23]Phelps, J. H. and Tucker, C. L., “Lagrangian particle calculations of distributive mixing: limitations and applications”, Chem. Engrg. Sci. 61 (2006) 68266836; doi:10.1016/j.ces.2006.07.008.
[24]Roberts, M. G., Baker, M., Jennings, L. C., Sertsou, G. and Wilson, N., “A model for the spread and control of pandemic influenza in an isolated geographical region”, J. R. Soc. Interface 4 (2007) 325330; doi:10.1098/rsif.2006.0176.
[25]Rousseau, G., Giorgini, B., Livi, R. and Chaté, H., “Dynamical phases in a cellular automaton model for epidemic propogation”, Physica D 103 (1997) 554563; doi:10.1016/S0167-2789(96)00285-0.
[26]Sewall, J., Wilkie, D. and Lin, M. C., “Interactive hybrid simulation of large-scale traffic”, ACM Trans. Graphics 30 (2011) Article No. 35; doi:10.1145/2070781.2024169.
[27]Simpson, M. J., Landman, K. A. and Hughes, B. D., “Multi-species simple exclusion processes”, Physica A 388 (2009) 399406; doi:10.1016/j.physa.2008.10.038.
[28]Simpson, M. J., Landman, K. A. and Hughes, B. D., “Cell invasion with proliferation mechanisms motivated by time-lapse data”, Physica A 389 (2010) 37793790; doi:10.1016/j.physa.2010.05.020.
[29]Simpson, M. J., Merrifield, A., Landman, K. A. and Hughes, B. D., “Simulating invasion with cellular automata: connecting cell-scale and population-scale properties”, Phys. Rev. E 76 (2007) 021918; doi:10.1103/PhysRevE.76.021918.
[30]Snow, J., On the mode of communication of cholera (John Churchill, London, 1854).
[31]Venkatachalam, S. and Mikler, A. R., “An infectious disease outbreak simulator based on the cellular automata paradigm”, in: Innovative internet community systems, Volume 3473 of Lecture Notes in Computer Science (eds Böhme, T., Larios Rosillo, V. M., Unger, H. and Unger, H.), (Springer, Berlin, 2006), 198211.
[32]Wang, Z. and Deisboeck, T. S., “Computational modeling of brain tumors: discrete, continuum or hybrid?”, Sci. Model. Simul. 15 (2008) 381393; doi:10.1007/s10820-008-9094-0.
[33]White, S. H., del Rey, A. M. and Rodríguez Sánchez, G., “Modeling epidemics using cellular automata”, Appl. Math. Comput. 186 (2007) 193202; doi:10.1016/j.amc.2006.06.126.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A HYBRID MODEL FOR STUDYING SPATIAL ASPECTS OF INFECTIOUS DISEASES

  • BENJAMIN J. BINDER (a1), JOSHUA V. ROSS (a1) and MATTHEW J. SIMPSON (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed