Skip to main content Accessibility help
×
Home

FEEDBACK PREDICTIVE CONTROL OF NONHOMOGENEOUS MARKOV JUMP SYSTEMS WITH NONSYMMETRIC CONSTRAINTS

  • YANQING LIU (a1) and FEI LIU (a1)

Abstract

We consider feedback predictive control of a discrete nonhomogeneous Markov jump system with nonsymmetric constraints. The probability transition of the Markov chain is modelled as a time-varying polytope. An ellipsoid set is utilized to construct an invariant set in the predictive controller design. However, when the constraints are nonsymmetric, this method leads to results which are over conserved due to the geometric characteristics of the ellipsoid set. Thus, a polyhedral invariant set is applied to enlarge the initial feasible area. The results obtained are for a more general class of dynamical systems, and the feasibility region is significantly enlarged. A numerical example is presented to illustrate the advantage of the proposed method.

Copyright

Corresponding author

References

Hide All
[1]Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E. N., “The explicit linear quadratic regulator for constrained systems”, Automatica J. IFAC 38 (2002) 320; doi:10.1016/S0005-1098(01)00174-1.
[2]Hou, Z. and Wang, B., “Markov skeleton process approach to a class of partial differential–integral equation systems arising in operations research”, Int. J. Innov. Comput. I 7 (2011) 67996814; http://www.ijicic.org/ijicic-10-08090.pdf.
[3]Huang, H., Li, D., Lin, Z. and Xi, Y., “An improved robust model predictive control design in the presence of actuator saturation”, Automatica J. IFAC 47 (2011) 861864; doi:10.1016/j.automatica.2011.01.045.
[4]“Internet traffic report”, http://www.internettrafficreport.com(2008).
[5]Iosifescu, M., Finite Markov processes and their applications (John Wiley, Bucharest, 1980).
[6]Kemeny, J. and Snell, J., Finite Markov chains (Van Nostrand, Princeton, NJ, 1960).
[7]Kothare, M. V., Balakrishnan, V. and Morari, M., “Robust constrained model predictive control using linear matrix inequalities”, Automatica J. IFAC 32 (1996) 13611379; doi:10.1016/0005-1098(96)00063-5.
[8]Liu, J., Gu, Z. and Hu, S., “H-infinity filtering for Markovian jump systems with time-varying delays”, Int. J. Innov. Comput. I 7 (2011) 12991310; http://www.researchgate.net/publication/224151362.
[9]Mayne, D. Q., Rawlings, J. B. and Rao, C. V., “Constrained model predictive control: stability and optimality”, Automatica J. IFAC 36 (2000) 789814; doi:10.1016/S0005-1098(00)00173-4.
[10]Narendra, K. S. and Tripathi, S. S., “Identification and optimization of aircraft dynamics”, J. Aircraft 10 (1973) 193199; doi:10.2514/3.44364.
[11]Pluymers, B., Rossiter, J. A., Suykens, J. A. K. and Moor, B. D., “The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty”, in: Proceedings of the American Control Conference, Volume 2 (2005) 804809; doi:10.1109/ACC.2005.1470058.
[12]Shi, P., Boukas, E. K. and Agarwal, R., “Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters”, IEEE Trans. Automat. Control 44 (1999) 15921597; doi:10.1109/9.780431.
[13]Shi, P., Boukas, E. K. and Agarwal, R., “Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay”, IEEE Trans. Automat. Control 44 (1999) 21392144; doi:10.1109/9.802932.
[14]Shi, P., Xia, Y., Liu, G. and Rees, D., “On designing of sliding mode control for stochastic jump systems”, IEEE Trans. Automat. Control 51 (2006) 97103; doi:10.1109/TAC.2005.861716.
[15]Vouzis, P. D., Bleris, L. G., Arnold, M. G. and Kothare, M. V., “A system-on-a-chip implementation for embedded real-time model predictive control”, IEEE Trans. Control Syst. Technol. 17 (2009) 10061017; doi:10.1109/TCST.2008.2004503.
[16]Wakasa, Y., Tanaka, K. and Nishimura, Y., “Distributed output consensus via LMI-based model predictive control and dual decomposition”, Int. J. Innov. Comput. I 7 (2011) 58015812; http://www.ijicic.org/ijicic-10-08009.pdf.
[17]Wan, Z. and Kothare, M. V., “An efficient off-line formulation of robust model predictive control using linear matrix inequalities”, Automatica J. IFAC 39 (1996) 837846; doi:10.1016/S0005-1098(02)00174-7.
[18]Wan, Z. and Kothare, M. V., “Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems”, IEEE Trans. Automat. Control 49 (2004) 11721177; doi:10.1109/TAC.2004.831122.
[19]Yin, Y., Shi, P. and Liu, F., “Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems”, IEEE Trans. Ind. Electron. 58 (2011) 13611379; doi:10.1109/TIE.2010.2103537.
[20]Zhang, L. and Boukas, E. K., “Mode-dependent $H_{\infty }$ filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities”, Automatica J. IFAC 45 (2009) 14621467; doi:10.1016/j.automatica.2009.02.002.
[21]Zhang, L. and Boukas, E. K., “$H_{\infty }$ control for discrete-time Markovian jump linear systems with partly unknown transition probabilities”, Int. J. Robust Nonlinear Control 19 (2009) 868883; doi:10.1002/rnc.1355.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed