Skip to main content Accessibility help
×
Home

Facility location via continuous optimization with discontinuous objective functions

  • J. Ugon, S. Kouhbor, M. Mammadov, A. Rubinov (a1) and A. Kruger...

Abstract

Facility location problems are one of the most common applications of optimization methods. Continuous formulations are usually more accurate, but often result in complex problems that cannot be solved using traditional optimization methods. This paper examines theuse of a global optimization method—AGOP—for solving location problems where the objective function is discontinuous. This approach is motivated by a real-world application in wireless networks design.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Facility location via continuous optimization with discontinuous objective functions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Facility location via continuous optimization with discontinuous objective functions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Facility location via continuous optimization with discontinuous objective functions
      Available formats
      ×

Copyright

References

Hide All
[1]Adicks, M. D., Billo, R. E., Norman, B. A., Banerjee, S., Nnaji, B. O. and Rajgopal, J., “Optimization of indoor wireless communication network”, IIE Trans. 34 (2002) 823836.
[2]Bagirov, A. M., Rubinov, A. M., Soukhoroukova, N. and Yearwood, J., “Supervised and unsupervised data classification via nonsmooth and global optimisation”, TOP 11 (2003) 193.
[3]Beckmann, M. J., “Continuous models of transportation and location”, Sist. Urb. 3 (1981) 403413.
[5]Hansen, E. R., Global optimization using interval analysis (Dekker, New York, 1992).
[6]Kiwiel, K. C., Methods of descent for nondifferentiable optimization, Lecture Notes in Mathematics 1133 (Springer, Berlin, 1985).
[7]Kolda, T. G., Lewis, R. M. and Torczon, V., “Optimization by direct search: New perspectives on some classical and modern methods”, SIAM Rev. 45 (2003) 385482.
[8]Lemaréchal, C., “Nonsmooth optimization and descent methods”, Technical Report RR-78-004, International Institute for Applied System Analysis, Laxemburg, Austria, 1978.
[9]Mammadov, M., “A new global optimization algorithm based on a dynamical systems approach”, in Proceedings International Conference on Optimization: Techniques and Applications—ICOTA6, (University of Ballarat,Australia, 2004), article index number 198.
[10]Mammadov, M., Rubinov, A. M. and Yearwood, J., “Dynamical systems described by relational elasticities with applications”, in Continuous Optimisation: current trends and applications (eds. Jeyakumar, V. and Rubinov, A. M.), (Springer, 2005) 365385.
[11]Morrow, R., Wireless Network Coexistence (McGraw-Hill, New York, USA, 2004).
[12]Pahlavan, K. and Krishnamurthy, P., Wireless Communications: Principles and Practice, 2nd ed. (Prentice Hall, New Jersey, USA, 2002).
[13]Panjwani, M. A., Abbott, A. L. and Rappaport, T. S., “Interactive computation of coverage regions for wireless communication in multifloored indoor environments“, IEEE J. Sel. Areas Comm. 14 (1996) 420430.
[14]Park, B. S., Yook, J. G. and Park, H. K., “The determination of base station placement and transmit power in an inhomogeneous traffic distribution for radio network planning”, in Proceedings of IEEE 56th Vehicular Technology Conference, Volume 4, (IEEE,Vancouver, 2002), 20512055.
[15]Rodrigues, R., Mateus, G. and Loureiro, A., “Optimal base station placement and fixed channel assignment applied to wireless local area projects”, in Proceedings of IEEE International Conference on Networks, (IEEE Computer Society,Brisbane,09 1999), 186192.
[16]Scaparra, M. P. and Scutellà, M. G., “Facilities, locations, customers: Building blocks of location models: a survey”, Technical Report TR-01-18, Università di Pisa, Italy, 2001.
[17]Sherali, H. D., Pendyala, C. M. and Rappaport, T. S., “Optimal location of transmitters for microcellular radio communication system design”, IEEE J. Sel. Areas Comm. 14 (1996) 662673.
[18]Tang, K. S., Man, K. F. and Ko, K. T., “Wireless LAN design using hierarchical genetic algorithm”, in Proceedings of 7th International Conference on Genetic Algorithm, (Morgan Haufman,East Lansing, MI, USA, 1997), 629635.
[19]Tang, K. S., Man, K. F. and Kwong, S., “Wireless communication network design in IC factory”, IEEE Trans. Indust. Elect. 48 (2001) 452–158.
[20]Unbehanun, M. and Kamenetsky, M., “On the deployment of picocellular wireless infrastructure”, IEEE Comm. Mag. 10 (2003) 7080.
[21] “Victorian partnership for advanced computing”, www.vpac.org.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Facility location via continuous optimization with discontinuous objective functions

  • J. Ugon, S. Kouhbor, M. Mammadov, A. Rubinov (a1) and A. Kruger...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.