Skip to main content Accessibility help



Macroscale “continuum” level predictions are made by a new way to construct computationally efficient “wrappers” around fine-scale, microscopic, detailed descriptions of dynamical systems, such as molecular dynamics. It is often significantly easier to code a microscale simulator with periodicity: so the challenge addressed here is to develop a scheme that uses only a given periodic microscale simulator; specifically, one for atomistic dynamics. Numerical simulations show that applying a suitable proportional controller within “action regions” of a patch of atomistic simulation effectively predicts the macroscale transport of heat. Theoretical analysis establishes that such an approach will generally be effective and efficient, and also determines good values for the strength of the proportional controller. This work has the potential to empower systematic analysis and understanding at a macroscopic system level when only a given microscale simulator is available.


Corresponding author


Hide All
[1] Alotaibi, H., “Developing multiscale methodologies for computational fluid mechanics”, Ph. D. Thesis, School of Mathematical Sciences, University of Adelaide, 2017.
[2] Aulbach, B. and Wanner, T., “The Hartman–Grobman theorem for Caratheodory-type differential equations in Banach spaces”, Nonlinear Anal. 40 (2000) 91104; doi:10.1016/S0362-546X(00)85006-3.
[3] Bechhoefer, J., “Feedback for physicists: a tutorial essay on control”, Rev. Modern Phys. 77 (2005) 783836; doi:10.1103/RevModPhys.77.783.
[4] Boxler, P., “A stochastic version of the centre manifold theorem”, Probab. Theory Related Fields 83 (1989) 509545; doi:10.1007/BF01845701.
[5] Bunder, J. E. and Roberts, A. J., “Patch dynamics for macroscale modelling in one dimension”, in: Proc. 10th Biennial Engineering Mathematics and Applications Conf., EMAC-2011 (eds Nelson, M. et al. ), ANZIAM J. 53 (2012) C280–C295; doi:10.21914/anziamj.v53i0.5074.
[6] Bunder, J. E. and Roberts, A. J., “Resolution of subgrid microscale interactions enhances the discretisation of nonautonomous partial differential equations”, Appl. Math. Comput. 304 (2017) 164179; doi:10.1016/j.amc.2017.01.056.
[7] Bunder, J. E., Roberts, A. J. and Kevrekidis, I. G., “Good coupling for the multiscale patch scheme on systems with microscale heterogeneity”, J. Comput. Phys. (2017) (in press); doi:10.1016/
[8] Cao, M. and Roberts, A. J., “Multiscale modelling couples patches of wave-like simulations”, in: Proc. 16th Biennial Computational Techniques and Applications Conf., CTAC-2012 (eds McCue, S. et al. ), ANZIAM J. 54 (2013) C153–C170; doi:10.21914/anziamj.v54i0.6137.
[9] Cao, M. and Roberts, A. J., “Multiscale modelling couples patches of nonlinear wave-like simulations”, IMA J. Appl. Math. 81 (2016) 228254; doi:10.1093/imamat/hxv034.
[10] Carr, E. J., Perré, P. and Turner, I. W., “The extended distributed microstructure model for gradient-driven transport: a two-scale model for bypassing effective parameters”, J. Comput. Phys. 327 (2016) 810829; doi:10.1016/
[11] Cheng, H., Greengard, L. and Rokhlin, V., “A fast adaptive multipole algorithm in three dimensions”, J. Comput. Phys. 155 (1999) 468498; doi:10.1006/jcph.1999.6355.
[12] Dove, M. T., “An introduction to atomistic simulation methods”, Sem. SEM 4 (2008) 737;
[13] Evans, D. J. and Hoover, W. G., “Flows far from equilibrium via molecular dynamics”, Annu. Rev. Fluid Mech. 18 (1986) 243264; doi:10.1146/annurev.fl.18.010186.001331.
[14] Frederix, Y. et al. , “Equation-free methods for molecular dynamics: a lifting procedure”, Proc. Appl. Meth. Mech. 7 (2007) 2010000320100004; doi:10.1002/pamm.200700025.
[15] Gear, C. W. and Kevrekidis, I. G., “Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum”, SIAM J. Sci. Comput. 24 (2003) 10911106; doi:10.1137/S1064827501388157.
[16] Givon, D., Kupferman, R. and Stuart, A., “Extracting macroscopic dynamics: model problems and algorithms”, Nonlinearity 17 (2004) R55R127; doi:10.1088/0951-7715/17/6/R01.
[17] Hairer, E., Lubich, C. and Wanner, G., “Geometric numerical integration illustrated by the Stormer–Verlet method”, Acta Numer. 12 (2003) 399450; doi:10.1017/S0962492902000144.
[18] Hassard, P., Turner, I., Farrell, T. and Lester, D., “Simulation of micro-scale porous flow using smoothed particle hydrodynamics”, in: Proc. 17th Biennial Computational Techniques and Applications Conf., CTAC-2014 (eds Sharples, J. and Bunder, J.), ANZIAM J. 56 (2016) C463–C480; doi:10.21914/anziamj.v56i0.9408.
[19] Horstemeyer, M. F., “Multiscale modeling: a review”, in: Practical aspects of computational chemistry (eds Leszczynski, J. and Shukla, M. K.), (Springer, Dordrecht, 2009) Ch. 4, 87135; doi:10.1007/978-90-481-2687-3_4.
[20] Kalweit, M. and Drikakis, D., “Multiscale simulation strategies and mesoscale modelling of gas and liquid flows”, IMA J. Appl. Math. 76 (2011) 661671; doi:10.1093/imamat/hxr048.
[21] Kevrekidis, I. G. and Samaey, G., “Equation-free multiscale computation: algorithms and applications”, Annu. Rev. Phys. Chem. 60 (2009) 321344; ;doi:10.1146/annurev.physchem.59.032607.093610.
[22] Koplik, J. and Banavar, J. R., “Continuum deductions from molecular hydrodynamics”, Annu. Rev. Fluid Mech. 27 (1995) 257292; doi:10.1146/annurev.fl.27.010195.001353.
[23] Koumoutsakos, P., “Multiscale flow simulations using particles”, Annu. Rev. Fluid Mech. 37 (2005) 457487; doi:10.1146/annurev.fluid.37.061903.175753.
[24] Liu, P., Samaey, G., Gear, C. W. and Kevrekidis, I. G., “On the acceleration of spatially distributed agent-based computations: a patch dynamics scheme”, Appl. Numer. Math. 92 (2015) 5469; doi:10.1016/j.apnum.2014.12.007.
[25] Moller, J., Runborg, O., Kevrekidis, P. G., Lust, K. and Kevrekidis, I. G., “Equation-free, effective computation for discrete systems: a time stepper based approach”, Internat. J. Bifur. Chaos 15 (2005) 975996;
[26] Plimpton, S. et al. , “Large-scale atomic/molecular massively parallel simulator”, Technical Report, Sandia National Laboratories, Department of Energy, USA, 2016; http://lammpssandiagov.
[27] Roberts, A. J., “Low-dimensional modelling of dynamics via computer algebra”, Comput. Phys. Comm. 100 (1997) 215230; doi:10.1016/S0010-4655(96)00162-2.
[28] Roberts, A. J., “Resolving the multitude of microscale interactions accurately models stochastic partial differential equations”, LMS J. Comput. Math. 9 (2006) 193221; ;doi:10.1112/S146115700000125X.
[29] Roberts, A. J., Model emergent dynamics in complex systems (SIAM, Philadelphia, PA, 2015);
[30] Roberts, A. J. and Kevrekidis, I. G., “General tooth boundary conditions for equation free modelling”, SIAM J. Sci. Comput. 29 (2007) 14951510; doi:10.1137/060654554.
[31] Roberts, A. J., MacKenzie, T. and Bunder, J., “A dynamical systems approach to simulating macroscale spatial dynamics in multiple dimensions”, J. Engrg. Math. 86 (2014) 175207; doi:10.1007/s10665-013-9653-6.
[32] Roose, D., Nies, E., Li, T., Vandekerckhove, C., Samaey, G. and Frederix, Y., “Lifting in equation-free methods for molecular dynamics simulations of dense fuids”, Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 855874; doi:10.3934/dcdsb.2009.11.855.
[33] Samaey, G., Kevrekidis, I. G. and Roose, D., “The gap-tooth scheme for homogenization problems”, Multiscale Model. Simul. 4 (2005) 278306; doi:10.1137/030602046.
[34] Samaey, G., Roose, D. and Kevrekidis, I. G., “Patch dynamics with buffers for homogenization problems”, J. Comput. Phys. 213 (2006) 264287; doi:10.1016/
[35] Wagner, G. J. et al. , “Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids”, Technical Report SAND2011-6659, Sandia National Laboratories, Department of Energy, USA, 2011;
[36] Yoshida, H., “Recent progress in the theory and application of symplectic integrators”, Celestial Mech. Dynam. Astronom. 56 (1993) 2743; doi:10.1007/BF00699717.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification

Type Description Title
Supplementary materials

Alotaibi et al. supplementary material
Alotaibi et al. supplementary material 1

 Unknown (196 KB)
196 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed