Skip to main content Accessibility help
×
Home

APPROXIMATE CONTROLLABILITY OF POPULATION DYNAMICS WITH SIZE DEPENDENCE AND SPATIAL DISTRIBUTION

  • S. P. WANG (a1) and Z. R. HE (a1)

Abstract

We investigate the approximate controllability of a size- and space-structured population model, for which the control function acts on a subdomain and corresponds to the migration of individuals. We establish the main result via the unique continuation property of the adjoint system. The desired controller is the minimizer of an infinite-dimensional optimization problem.

Copyright

Corresponding author

References

Hide All
[1] Ainseba, B. and Langlais, M., “Sur le problème de contrôle d’une population structurée en âge et en espace”, C. R. Acad. Sci. Paris Sér. 1 323 (1996) 269274; http://cat.inist.fr/?aModele=afficheN&cpsidt=3183008.
[2] Ainseba, B. and Langlais, M., “On a population dynamics control problem with age dependence and spatial structure”, J. Math. Anal. Appl. 248 (2000) 455474; doi:10.1006/jmaa.2000.6921.
[3] Aniţa, S., Analysis and control of age-dependent population dynamics (Kluwer Academic, Dordrecht, 2000).
[4] Barbu, V., Iannelli, M. and Martcheva, M., “On the controllability of the Lotka–McKendrick model of population dynamics”, J. Math. Anal. Appl. 253 (2001) 142165; doi:10.1006/jmaa.2000.7075.
[5] Boulite, S., Idrissi, A. and Maniar, L., “Controllability of semi-linear boundary problems with nonlocal initial conditions”, J. Math. Anal. Appl. 316 (2006) 566578; doi:10.1016/j.jmaa.2005.05.006.
[6] Ebenman, B. and Persson, L., Size-structured populations: ecology and evolution (Springer, Berlin–Heidelberg–New York–London, 1988).
[7] Fursikov, A. V. and Imanuvilov, O. Y., Controllability of evolution equations, Volume 34 of Lecture Notes Series (Seoul National University, Seoul, Korea, 1996).
[8] He, Y. and Ainseba, B., “Exact null controllability of the Lobesia botrana model with diffusion”, J. Math. Anal. Appl. 409 (2014) 530543; doi:10.1016/j.jmaa.2013.07.020.
[9] Kavian, O. and Traoré, O., “Approximate controllability by birth control for a nonlinear population dynamics model”, ESAIM Control Optim. Calc. Var. 17 (2011) 11891213; doi:10.1051/cocv/2010043.
[10] Li, T., Exact controllability perturbation and stabilization of distributed parameter systems (Higher Education Press, Beijing, 2012).
[11] Lions, J. L., Contrôlabilité exacte, perturbations et stabilisation de systèms distributés, Tome 1, Contrôlabilité exacte (Dunod, Paris, 1988).
[12] Sinko, J. W. and Streifer, W., “A new model for age-size structure of a population”, Ecology 48 (1967) 910918; http://www.jstor.org/stable/1934533.
[13] Traore, O., “Approximate controllability and application to data assimilation problem for a linear population dynamics model”, IAENG Int. J. Appl. Math. 37 (2007) 112; http://www.iaeng.org/IJAM/issues_v37/issue_1/IJAM_37_1_01.pdf.
[14] Yamamoto, M., “Carleman estimates for parabolic equations and applications”, Inverse Problems 25 (2009) 175; doi:10.1088/0266-5611/25/12/123013.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

APPROXIMATE CONTROLLABILITY OF POPULATION DYNAMICS WITH SIZE DEPENDENCE AND SPATIAL DISTRIBUTION

  • S. P. WANG (a1) and Z. R. HE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed