Skip to main content Accessibility help
×
Home

ADVENTURES IN INVARIANT THEORY

  • P. D. JARVIS (a1) and J. G. SUMNER (a1)

Abstract

We provide an introduction to enumerating and constructing invariants of group representations via character methods. The problem is contextualized via two case studies, arising from our recent work: entanglement invariants for characterizing the structure of state spaces for composite quantum systems; and Markov invariants, a robust alternative to parameter-estimation intensive methods of statistical inference in molecular phylogenetics.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      ADVENTURES IN INVARIANT THEORY
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      ADVENTURES IN INVARIANT THEORY
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      ADVENTURES IN INVARIANT THEORY
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Allman, E. S., Jarvis, P. D., Rhodes, J. A. and Sumner, J. G., “Tensor rank, invariants, inequalities, and applications”, SIAM. J. Matrix Anal. Appl. 34 (2013) 10141045; doi:10.1137/120899066.
[2]Allman, E. S. and Rhodes, J. A., “Phylogenetic ideals and varieties for the general Markov model”, Adv. Appl. Math. 20 (2007) 127148; doi:10.1016/j.aam.2006.10.002.
[3]Barry, D. and Hartigan, J. A., “Asynchronous distance between homologous DNA sequences”, Biometrics 43 (1987) 261276; doi:10.2307/2531811.
[4]Buneman, P., “The recovery of trees from measures of dissimilarity”, in: Mathematics in the archaeological and historical sciences (Edinburgh University Press, Edinburgh, 1971) 387395.
[5]Cavender, J. A. and Felsenstein, J., “Invariants of phylogenies in a simple case with discrete states”, J. Classification 4 (1987) 5771; doi:10.1007/BF01890075.
[6]Coffman, V., Kundu, J. and Wootters, W. K., “Distributed entanglement”, Phys. Rev. A 61 (2000); doi:10.1103/PhysRevA.61.052306.
[7]Eltschka, C. and Siewert, J., “Quantifying entanglement resources”, J. Phys. A Math. Theor. 47 (2014); doi:10.1088/1751-8113/47/42/424005.
[8]Fauser, B. and Jarvis, P. D., “A Hopf laboratory for symmetric functions”, J. Phys. A: Math. Gen. 37 (2004) 16331663; doi:10.1088/0305-4470/37/5/012.
[9]Fauser, B., Jarvis, P. D., King, R. C. and Wybourne, and B. G., “New branching rules induced by plethysm”, J. Phys. A: Math. Gen. 39 (2006) 26112655; doi:10.1088/0305-4470/39/11/006.
[10]Goodman, R. and Wallach, N. R., Representations and invariants of the classical groups, Volume 68 of Enyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1998).
[11]Grassl, M., Rötteler, M. and Beth, T., “Computing local invariants of quantum-bit systems”, Phys. Rev. A 58 (1998) 18331839; doi:10.1103/PhysRevA.58.1833.
[12]Hall, B. C., Quantum theory for mathematicians, Volume 267 of Graduate Texts in Mathematics (Springer, New York, 2013).
[13]Holland, B. R., Jarvis, P. D. and Sumner, J. G., “Low-parameter phylogenetic inference under the general Markov model”, Syst. Biol. 62 (2013) 7892; doi:10.1093/sysbio/sys072.
[14]Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K., “Quantum entanglement”, Rev. Mod. Phys. 81 (2009) 865942; doi:10.1103/RevModPhys.81.865.
[15]Jarvis, P. D., “The mixed two qutrit system: local unitary invariants, entanglement monotones and the SLOCC group $SL(3,\mathbb{C})$”, J. Phys. A: Math. Gen. 47 (2014) 215302; doi:10.1088/1751-8113/47/21/215302.
[16]Jarvis, P. D. and Sumner, J. G., “Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model”, Preprint, 15 pp., arXiv:1307.5574.
[17]Jarvis, P. D. and Sumner, J. G., “Markov invariants for phylogenetic rate matrices derived from embedded submodels”, Trans. Comp. Biol. Bioinform. 9 (2012) 828836; doi:10.1109/TCBB.2012.24.
[18]Johnson, J. E., “Markov-type Lie groups in $\text{GL}(n,\mathbb{R})$”, J. Math. Phys. 26 (1985) 252257; doi:10.1109/TCBB.2012.24.
[19]King, R. C., Welsh, T. A. and Jarvis, P. D., “The mixed two-qubit system and the structure of its ring of local invariants”, J. Phys. A: Math. Theor. 40 (2007) 10083; doi:10.1088/1751-8113/40/33/011.
[20]Lake, J. A., “A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony”, Mol. Biol. Evol. 4(2) (1987) 167191.
[21]Lake, J. A., “Reconstructing evolutionary trees from DNA and protein sequences: Paralinear distances”, Proc. Natl. Acad. Sci., USA 91 (1994) 14551459; doi:10.1073/pnas.91.4.1455.
[22]Littlewood, D. E., The theory of group characters (Clarendon Press, Oxford, 1940).
[23]Lockhart, P. J., Steel, M. A., Hendy, M. D. and Penny, D., “Recovering evolutionary trees under a more realistic model of sequence evolution”, Mol. Biol. Evol. 11 (1994) 605612;http://www.ncbi.nlm.nih.gov/pubmed/19391266.
[24]Makhlin, Y., “Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations”, Quantum Inf. Process. 1 (2002) 243252; doi:10.1023/A:1022144002391.
[25]Molien, T., “Über die Invarianten der linearen Substitutionsgruppen”, Sitzungsber. König. Preuss. Akad. Wiss. (1897) 11521156;http://www.sciencedirect.com/science/article/pii/S0195669889800496.
[26]Mourad, B., “On a Lie-theoretic approach to generalised doubly stochastic matrices and applications”, Linear Multilinear Algebra 52 (2004) 99113; doi:10.1080/0308108031000140687.
[27]Semple, C. and Steel, M., Phylogenetics (Oxford University Press, Oxford, 2003).
[28]Sumner, J. G., “Entanglement, invariants, and phylogenetics”, Ph. D. Thesis, University of Tasmania, 2006.
[29]Sumner, J. G., Charleston, M. A., Jermiin, L. S. and Jarvis, P. D., “Markov invariants, plethysms, and phylogenetics”, J. Theor. Biol. 253 (2008) 601615; doi:10.1016/j.jtbi.2008.04.001.
[30]Sumner, J. G. and Jarvis, P. D., “Entanglement invariants and phylogenetic branching”, J. Math. Biol. 51 (2005) 1836 (erratum); 53 (2006) 490; doi:10.1007/s00285-004-0309-z.
[31]Sumner, J. G. and Jarvis, P. D., “Using the tangle: A consistent construction of phylogenetic distance matrices for quartets”, Math. Biosci. 204 (2006) 4967; doi:10.1016/j.mbs.2006.05.008.
[32]Sumner, J. G. and Jarvis, P. D., “Markov invariants and the isotropy subgroup of a quartet tree”, J. Theor. Biol. 258 (2009) 302310; doi:10.1016/j.jtbi.2009.01.021.
[33]Sumner, J. G., Jarvis, P. D., Allman, E. S. and Rhodes, J. A., “Phylogenetic invariants from group characters alone”, in preparation, 2014.
[34]Sumner, J., Fernández-Sánchez, J. and Jarvis, P., “Lie Markov models”, J. Theor. Biol. 298 (2012) 1631; doi:10.1016/j.jtbi.2011.12.017.
[35]Sumner, J., Fernández-Sánchez, J., Woodhams, M. and Jarvis, P., “Lie Markov models with purine/pyrimidine symmetry”, J. Math. Biol. (2014) 147; doi:10.1007/s00285-014-0773-z.
[36]Verstraete, F., Dehaene, J., de Moor, B. and Verschelde, H., “Four qubits can be entangled in nine different ways”, Phys. Rev. A 65 (2002) 052112; doi:10.1103/PhysRevA.65.052112.
[37]Vidal, G., “Entanglement monotones”, J. Modern Opt. 47 (2000) 355376; doi:10.1080/095003400148268.
[38]Weyl, H., The classical groups: their invariants and representations (Princeton University Press, Princeton, NJ, 1939).
[39]Wybourne, B. G. et al. , SCHUR group theory software, an interactive program for calculating properties of Lie groups and symmetric functions, http://schur.sourceforge.net/.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed