Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T12:51:05.807Z Has data issue: false hasContentIssue false


Published online by Cambridge University Press:  19 March 2024

Department of Mathematics and Statistics, Beijing Institute of Technology, Beijing, PR China e-mail:,
H. XU*
Department of Mathematics and Statistics, Beijing Institute of Technology, Beijing, PR China e-mail:,
Department of Mathematics and Statistics, Beijing Institute of Technology, Beijing, PR China e-mail:,


Designing a reasonable M/G/1 retrial queue system that enhances service efficiency and reduces energy consumption is a challenging issue in Information and Communication Technology systems. This paper presents an M/G/1 retrial queue system incorporating random working vacation (RWV) and improved service efficiency during vacation (ISEV) policies, and examines its optimal queuing strategies. The RWV policy suggests that the server takes random working vacations during reserved idle periods, effectively reducing energy consumption. In contrast, the ISEV policy strives to augment service efficiency during regular working periods by updating, inspecting or maintaining the server on vacations. The system is transformed into a Cauchy problem to investigate its well-posedness and stability, employing operator semigroup theory. Based on the system’s stability, steady-state performance measures, such as service efficiency, energy consumption and expected costs, are quantified using the steady-state solution. The paper subsequently demonstrates the existence of optimal queuing strategies that achieve maximum efficiency and minimum expected costs. Finally, two numerical experiments are provided to illustrate the effectiveness of the system.

MSC classification

Research Article
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aguir, S., Karaesmen, F., Akşin, O. Z. and Chauvet, F., “The impact of retrials on call center performance”, OR Spectrum 26 (2004) 353376; doi:10.1007/S00291-004-0165-7.CrossRefGoogle Scholar
Artalejo, J. R., “A queueing system with returning customers and waiting line”, Oper. Res. Lett. 17 (1995) 191199; doi:10.1016/0167-6377(95)00017-E.CrossRefGoogle Scholar
Artalejo, J. R. and Gómez-Corral, A., “Steady state solution of a single-server queue with linear repeated requests”, J. Appl. Probab. 34 (1997) 223233; doi:10.1017/S0021900200100841.CrossRefGoogle Scholar
Artalejo, J. R. and Gómez-Corral, A., “Analysis of a stochastic clearing system with repeated attempts”, Comm. Statist. Stocha. Model. 14 (1998) 623645; doi:10.1080/15326349808807492.CrossRefGoogle Scholar
Burke, P. J., “The output of a queuing system”, Oper. Res. 6 (1956) 699704; doi:10.1287/opre.4.6.699.CrossRefGoogle Scholar
Burnetas, A. and Economou, A., “Equilibrium customer strategies in a single server Markovian queue with setup times”, Queueing Syst. 56 (2007) 213228; doi:10.1007/s11134-007-9036-7.CrossRefGoogle Scholar
Do, T. V., “M/M/1 retrial queue with working vacations”, Acta Inform. 47 (2010) 6775; doi:10.1007/s00236-009-0110-y.CrossRefGoogle Scholar
Dong, H. and Xu, G., “The well-posedness of a retrial queue system with Bernoulli feedback and starting failure”, Evol. Inst. Econ. Rev. 12 (2015) 115117; doi:10.1007/10.1007/s40844-015-0009-y.Google Scholar
Doshi, B. T., “Queueing systems with vacations—A survey”, Queueing Syst. 1 (1986) 2966; doi:10.1007/BF01149327.CrossRefGoogle Scholar
Engel, K. J., Nagel, R. and Brendle, S., One-parameter semigroups for linear evolution equations (Springer, New York, 2012).Google Scholar
Escobar, M., Odoni, A. R. and Roth, E., “Approximate solution for multi-server queueing systems with Erlangian service times,” Comput. Oper. Res. 29 (2002) 13531374; doi:10.1016/S0305-0548(01)00036-3.CrossRefGoogle Scholar
Falin, G. and Templeton, J., Retrial queues (Chapman & Hall, London, 1997).CrossRefGoogle Scholar
Gao, S. and Liu, Z., “An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule”, Appl. Math. Model. 37 (2013) 15641579; doi:10.1016/j.apm.2012.04.045.CrossRefGoogle Scholar
Gao, S., Wang, J. and Li, W. W., “An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption”, Asia-Pac. J. Oper. Res. 31 (2014) 1440006; doi:10.1142/S0217595914400065.CrossRefGoogle Scholar
Gupur, G., Functional analysis methods for reliability models (Springer, Germany, 2011).CrossRefGoogle Scholar
Kim, J. D., Choi, D. W. and Chae, K. C., “Analysis of queue-length distribution of the M/G/1 queue with working vacations (M/G/1/WV)”, Proc. Hawaii Inter, Conf. Stat. Relat. Field. 2003, Honolulu, HI, USA, June 5--8, 2003, 11911200; Scholar
Kovtun, V., Izonin, I. and Gregus, M., “Mathematical models of the information interaction process in 5G-IoT ecosystem: different functional scenarios”, ICT Express 9 (2023) 264269; doi:10.1016/j.icte.2021.11.008.CrossRefGoogle Scholar
Kuznetsov, D. Y. and Nazarov, A. A., “Analysis of non-Markovian models of communication networks with adaptive protocols of multiple random access”, Autom. Remote Control 62 (2001) 124146; doi:10.1023/A:1010231008994.Google Scholar
Liu, Z. and Song, Y., “Geo/Geo/1 retrial queue with non-persistent customers and working vacations”, J. Appl. Math. Comput. 42 (2013) 103115; doi:10.1007/s12190-012-0623-3.CrossRefGoogle Scholar
Nazarov, A. A. and Tsoj, S. A., “A common approach to studies of Markov models for data transmission networks controlled by the static random multiple access protocols”, Autom. Contr. Comput. Sci. 4 (2004) 7385.Google Scholar
Pazy, A., Semigroups of linear operators and applications to partial differential equations (Springer, New York, 2012).Google Scholar
Servi, L. D. and Finn, S. G., “M/M/1 queues with working vacations (M/M/1/WV)”, Perform. Eval. 50 (2002) 4152; doi:10.1016/S0166-5316(02)00057-3.CrossRefGoogle Scholar
Son, K., Kim, H., Yi, Y. and Krishnamachari, B., “Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks”, IEEE J. Sel. Area. Comm. 29 (2011) 15251536; doi:10.1109/JSAC.2011.110903.CrossRefGoogle Scholar
Takagi, H., Queueing analysis: a foundation of performance evaluation, Volume 1: vacation and priority systems, Part 1 (Elsevier Science, Amsterdam, The Netherlands, 1991) 15251536.Google Scholar
Wang, W., “The well-posedness and regularity of an M ${}^x$ /G/1 queue with feedback and optional server vacations based on a single vacation policy”, Int. J. Inform. Manage. Sci. 20 (2009) 205216; Scholar
Wang, W. and Xu, G. Q., “The well-posedness of an M/G/1 queue with second optional service and server breakdown”, Comput. Math. Appl. 57 (2009) 729739; doi:10.1016/j.camwa.2008.09.038.CrossRefGoogle Scholar
Wu, D. A. and Takagi, H., “M/G/1 queue with multiple working vacations”, Performance Evaluat. 63 (2006) 654681; doi:10.1016/J.PEVA.2005.05.005.CrossRefGoogle Scholar
Wu, J., Wu, Y., Zhou, S. and Niu, Z., “Traffic-aware power adaptation and base station sleep control for energy-delay tradeoffs in green cellular networks”, 2012 IEEE Global Communications Conf. (GLOBECOM) (Anaheim, CA, USA, 2012), 31713176; doi: 10.1109/GLOCOM.2012.6503602.Google Scholar
Zhang, M. and Liu, Q., “An M/G/1 G-queue with server breakdown, working vacations and vacation interruption”, Opsearch 52 (2015) 256270; doi:10.1007/s12597-014-0183-4.CrossRefGoogle Scholar
Zhang, S., Wu, Y., Zhou, S. and Niu, Z., “Traffic-aware network planning and green operation with BS sleeping and cell zooming”, IEICE Trans. Commun. 97 (2014) 23372346; doi:10.1587/transcom.E97.B.2337.CrossRefGoogle Scholar
Zhang, Y. and Wang, J. T., “Equilibrium pricing in an M/G/1 retrial queue with reserved idle time and setup time”, Appl. Math. Model. 49 (2017) 514530; doi:10.1016/j.apm.2017.05.017.CrossRefGoogle Scholar
Zheng, F., Gao, C. and Zhu, G. T., “Asymptotic stability of the M/G/1 queueing system”, Acta Anal. Func. Appl. 13 (2011) 218224; doi:10.3724/SP.J.1160.2011.00218.Google Scholar