Skip to main content Accessibility help
×
Home

Article contents

The early chronology of broomcorn millet (Panicum miliaceum) in Europe

Published online by Cambridge University Press:  22 November 2013


Giedre Motuzaite-Matuzeviciute
Affiliation:
1McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK (Email: gm327@cam.ac.uk; xl241@cam.ac.uk; hvh22@cam.ac.uk) 2History Faculty/Department of Archaeology, Vilnius University, Universiteto 7, 01513 Vilnius, Lithuania (Email: Giedre.keen@if.vu.lt)
Richard A. Staff
Affiliation:
3Oxford Radiocarbon Accelerator Unit (ORAU), Research Laboratory for Archaeology and the History of Art (RLAHA), University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK (Email: richard.staff@rlaha.ox.ac.uk)
Harriet V. Hunt
Affiliation:
1McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK (Email: gm327@cam.ac.uk; xl241@cam.ac.uk; hvh22@cam.ac.uk)
Xinyi Liu
Affiliation:
1McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK (Email: gm327@cam.ac.uk; xl241@cam.ac.uk; hvh22@cam.ac.uk)
Martin K. Jones
Affiliation:
4Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK (Email: mkj12@cam.ac.uk)

Abstract

The majority of the early crops grown in Europe had their origins in south-west Asia, and were part of a package of domestic plants and animals that were introduced by the first farmers. Broomcorn millet, however, offers a very different narrative, being domesticated first in China, but present in Eastern Europe apparently as early as the sixth millennium BC. Might this be evidence of long-distance contact between east and west, long before there is any other evidence for such connections? Or is the existing chronology faulty in some way? To resolve that question, 10 grains of broomcorn millet were directly dated by AMS, taking advantage of the increasing ability to date smaller and smaller samples. These showed that the millet grains were significantly younger than the contexts in which they had been found, and that the hypothesis of an early transmission of the crop from east to west could not be sustained. The importance of direct dating of crop remains such as these is underlined.


Type
Research articles
Information
Copyright
Copyright © Antiquity Publications Ltd. 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

Antanaitis, I. & Ogrinc, N.. 2000. Chemical analysis of bone: stable isotope evidence of the diet of Neolithic and Bronze Age people in Lithuania. Istorija 45: 312.Google Scholar
Baltensperger, D.D. 2002. Progress with proso, pearl and other millets, in Janick, J. & Whipkey, A. (ed.) Trends in new crops and new uses: 19. Alexandria (VA): American Society for Horticultural Science Press.Google Scholar
Barton, L., Newsome, S.D., Chen, F.H. Wang, H. Guilderson, T.P. & Bettinger, R.L.. 2009. Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences of the USA 106: 5523-28.CrossRefGoogle ScholarPubMed
Bogaard, A. & Walker, A.. 2011. Plant use and management at M?agura-Buduiasca (Teleor 003), southern Romania: preliminary report on the archaeobotanical analysis. Report prepared for the European Union, Brussels.Google Scholar
Boivin, N., Q.|Fuller, D. & Crowther, A.. 2012. Old World globalization and the Columbian exchange: comparison and contrast. World Archaeology 44: 452-69.CrossRefGoogle Scholar
Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. Bronk. 2010. Current pre-treatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52: 103-12.CrossRefGoogle Scholar
Cohen, D.J. 1998. The origins of domesticated cereals and the Pleistocene-Holocene transition in East Asia. The Review of Archaeology 19: 2229.Google Scholar
Cohen, D.J. 2002. New perspectives on the transition to agriculture in China, in Yasuda, Y. (ed.) The origins of pottery and agriculture: 217-27. New Delhi: Lustre & Roli.Google Scholar
Crawford, G. 2006. East Asian plant domestication, in Stark, S.T. (ed.) Archaeology of Asia: 7795. Oxford: Blackwell. CrossRefGoogle Scholar
De Wet, J.M.J. & Harlan, J.R.. 1975. Weeds and domesticates: evolution in the man-made habitat. Economic Botany 29: 99108.CrossRefGoogle Scholar
Frachetti, M.D. 2012. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Current Anthropology 53: 238.CrossRefGoogle Scholar
Fuller, D.Q. 2006. A millet atlas: some identification guidance. Report prepared for University College London. Available at: http://www.homepages.ucl.ac.uk/?tcrndfu/Abot/Millet%20Handout06.pdf (accessed 30 August 2013).Google Scholar
Graybosch, R.A. & Baltensperger, D.D.. 2009. Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breeding 128: 7073.CrossRefGoogle Scholar
HajnalovÁ, E. 1989. Katalóg zvyskov semien a plodov v archeologickych nálezoch na Slovensku. Acta Interdisciplinaria Archeologica 6: 3192.Google Scholar
Harlan, J.R. 1975. Crops and man. Madison (WI): American Society of Agronomy. Google Scholar
Hunt, H.V., Linden, M. Vander, Liu, X. Motuzaite-Matuzeviciute, G., Colledge, S. & Jones, M.K.. 2008. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Vegetation History and Archaeobotany 17: 518.CrossRefGoogle ScholarPubMed
Hunt, H.V., Campana, M.G., Lawes, M.C. Park, Y.J.I.N. Bower, M.A. Howe, C.J. & Jones, M.K.. 2011. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Molecular Ecology 20: 4756-71.CrossRefGoogle ScholarPubMed
Jacomet, S. 2004. Archaeobotany. A vital tool in the investigation of lake-dwellings, in Menotti, F. (ed.) Living on the lake in prehistoric Europe. 150 years of lake dwelling research: 162-77. London: Routledge.Google Scholar
Jones, M.K. 2004. Between Fertile Crescents: minor grain crops and agricultural origins, in Jones, M.K. (ed.) Traces of ancestry: studies in honour of Colin Renfrew: 127-35. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Kohl, P.L. 2007. The making of Bronze Age Eurasia. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
Kohler-Schneider, M. & Caneppele, A.. 2009. Late Neolithic agriculture in eastern Austria: archaeobotanical results from sites of the Baden and Jevišovice cultures (3600-2800 BC). Vegetation History and Archaeobotany 18: 6174.CrossRefGoogle Scholar
Kreuz, A. & SchÄFer., E. 2011. Weed finds as indicators for the cultivation regime of the early Neolithic Bandkeramik culture? Vegetation History and Archaeobotany 20: 333-48.CrossRefGoogle Scholar
Kreuz, A., Marinova, E. SchÄFer, E. & Wiethold, J.. 2005. A comparison of early Neolithic crop and weed assemblages from the Linearbandkeramik and the Bulgarian Neolithic cultures: differences and similarities. Vegetation History and Archaeobotany 14: 237-58.CrossRefGoogle Scholar
Kuzminova, N.N. & Petrenko, V.G.. 1989. Kulturnye rasteniya na zapade Stepnogo Prichernomorya v seredine 3-2 tis. do n. e. (po dannym paleobotaniki), in Tolochko, P.P. (ed.) Problemu Drevnei Istorii i Arkheologii Ukrainskoi SSR: 119-20. Kiev: Naukova Dumka.Google Scholar
Lawler, A. 2009. Millet on the move. Science 325: 942-43.CrossRefGoogle ScholarPubMed
Leshtakov, K., Todorova, N. Petrova, V. Zlateva-Uzunova, R., ÖZbek, O., Popova, T., Spassov, N. & Iliev, N.. 2007. Preliminary report on the salvage archaeological excavations at the Early Neolithic site Yabalkovo in the Maritsa Valley. Anatolica 33: 185234.CrossRefGoogle Scholar
Liu, X., Jones, M.K. Zhao, Z. Liu, G. & O'Connell., T.C. 2012. The earliest evidence of millet as a staple crop: new light on Neolithic foodways in north China. American Journal of Physical Anthropology 149: 283-90.CrossRefGoogle Scholar
Lu, H., Zhang, J. Liu, K. Wu, N. Li, Y. Zhou, K. Ye, M. Zhang, T. Zhang, H. & Yang, X.. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the USA 106: 16.CrossRefGoogle ScholarPubMed
Marinval, P. 1992. Archaeobotanical data on millet (Panicum miliaceum and Setaria italica) in France. Review of Palaeobotany and Palynology 73: 259–70.CrossRefGoogle Scholar
Mei, J. 2003. Qijia and Seima-Turbino: the question of early contacts between northwest China and the Eurasian steppe. Bulletin of theMuseum of Far Eastern Antiquities 75: 3154.Google Scholar
Motuzaite-Matuzeviciute, G., Hunt, H.V. & Jones, M.K.. 2012. Experimental approaches to understanding variation in grain size in Panicum miliaceum (broomcorn millet) and its relevance for interpreting archaeobotanical assemblages. Vegetation History and Archaeobotany 21: 6977.CrossRefGoogle Scholar
MÜLler-ScheeßEl, N., Hofmann, R., MÜLler, J. & Rassmann, K.. 2010. The socio-political development of the Late Neolithic settlement of Okoliste/Bosnia-Hercegowina: devolution by transhumance?, in Kiel Graduate School (ed.) Landscapes and human development: the contribution of European archaeology: 181-91. Bonn: Rudolf Habelt.Google Scholar
Nesbitt, M. & Summers, G.D.. 1988. Some recent discoveries of millet (Panicum miliaceum L. and Setaria italica (L.) P. Beauv.) at excavations in Turkey and Iran. Anatolian Studies 38: 8597.CrossRefGoogle Scholar
Pashkevich, G.A. 2003. Palaeoethnobotanical evidence of agriculture in steppe and forest-steppe of East Europe in the Late Neolithic and Bronze Age, in Levine, M., Renfrew, C. & Boyle, K. (ed.) Prehistoric steppe adaptation and the horse: 287-97. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Popova, T. 2010. Plant environment of man between 6000 and 2000 BC in Bulgaria (British Archaeological Reports international series 2064). Oxford: Archaeopress. Google Scholar
Rachie, K.O. 1975. Millets. Importance, utilization and outlook. Hyderabad: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Google Scholar
Reimer, P.J., Baillie, M.G. Bard, E. Bayliss, A. Beck, J.W. Blackwell, P.G. Ramsey, C. Bronk, Buck, C.E. Burr, G.S. Edwards, R.L. Friedrich, M. Grootes, P.M. Guilderson, T.P. Hajdas, I. Heaton, T.J. Hogg, A.G. Hughen, K.A. Kaiser, K.F. Kromer, B. Mccormac, F.G. Manning, S.W. Reimer, R.W. Richards, D.A. Southon, J.R. Talamo, S. Turney, C.S.M. Plicht, J. Van Der & C. Weyhenmeyer, . 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111-50.CrossRefGoogle Scholar
Santos, G.M., Southon, J.R. Griffin, S.| Beaupre, S.R. & Druffel, E.R.M.. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259: 293302.CrossRefGoogle Scholar
Sherratt, A. 1996. Plate tectonics and imaginary prehistories: structure and contingency in agricultural origins, in Harris, D.R. (ed.) The origins and spread of agriculture and pastoralism in Eurasia: 130-41. Washington, D.C.: Smithsonian Institution.Google Scholar
Stuiver, M. & Polach, H.A.. 1977. Discussion: reporting of 14C data. Radiocarbon 19: 355-63.CrossRefGoogle Scholar
Tafuri, M.A., Craig, O.E & Canci, A.. 2009. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. American Journal of Physical Anthropology 139: 146-53.CrossRefGoogle ScholarPubMed
Tieszen, L.L. 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology. Journal of Archaeological Science 18: 227-48.CrossRefGoogle Scholar
Van Der Merwe, N.J. 1982. Carbon isotopes, photosynthesis, and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. American Scientist 70: 596606.Google Scholar
Verloove, F. 2002. A revision of the genus Panicum (Poaceae, Paniceae) in Belgium. Systematics and Geography of Plants 71: 5372.CrossRefGoogle Scholar
Wasylikowa, K., CÂRciumaru, M., HajnalovÁ, E., HartyÁNyi, B.P., Pashkevich, G.A. & Yanushevich, Z.V.. 1991. East-central Europe, in Zeist, W. Van, Wasylikowa, K. & Karl-Ernst, B. (ed.) Progress in Old World palaeoethnobotany. A retrospective view on the occasion of 20 years of the International Work Group for Palaeoethnobotany: 207-39. Rotterdam: A.A. Balkema.Google Scholar
Weber, S.A. & Fuller, D.Q.. 2007. Millets and their role in early agriculture. Paper presented at the First Farmers in Global Perspectives conference, Lucknow, India, 18-20 January 2006.Google Scholar
Yanushevich, Z.V. 1976. Kulturnye rasteniya yugo-zapada SSSR po paleobotanicheskim issledovaniyam. Kishinev: Shtiintsa. Google Scholar
Zhao, Z. 2005. Zhiwu kaoguxue jiqi xin jinzhan. Kaogu 7: 4249.Google Scholar
Zhao, Z. 2011. New archaeobotanic data for the study of the origins of agriculture in China. Current Anthropology 52: 295306.CrossRefGoogle Scholar
Zohary, D., Hopf, M. & Weiss, E.. 2012. Domestication of plants in the Old World: the origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean basin. Oxford: Oxford University Press. CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 193 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-nf2kx Total loading time: 0.289 Render date: 2020-12-05T15:25:14.039Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 15:01:21 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The early chronology of broomcorn millet (Panicum miliaceum) in Europe
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The early chronology of broomcorn millet (Panicum miliaceum) in Europe
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The early chronology of broomcorn millet (Panicum miliaceum) in Europe
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *