Skip to main content Accessibility help

Total and fractionation metal contents obtained with sequential extraction procedures in a sediment core from Terra Nova Bay, West Antarctica

  • Claudia E. Casalino (a1), Mery Malandrino (a2), Agnese Giacomino (a2) and Ornella Abollino (a2)


A suite of 21 elements, namely Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, V and Zn, was investigated in a sediment core from the Ross Sea, Antarctica. The experimental results were treated by chemometric techniques. The elemental composition of core H2 was found to be mainly dominated by terrigenous elements, but it is also influenced by biological factors, such as the presence of corals. No evidence of anthropogenic contamination was observed, even in the top layer of the sediment. Furthermore, the modified Community Bureau of Reference (BCR) three-step sequential extraction procedure was applied to evaluate metal mobility and availability. The results confirmed the separation between higher and lower sections of the core and showed the presence of Fe as amorphous and crystalline oxide and of Mn mostly as nodules. The high percentages of metals extracted into the fourth fraction indicate their strong binding with the sediment matrix. Finally, BCR procedure was compared to Tessier's protocol which made it possible to distinguish between mobile and mobilizable fraction. Therefore, in general partitioning procedure must be chosen taking into account the nature of the sample and the aim of the research.


Corresponding author


Hide All
Abollino, O., Giacomino, A., Malandrino, M.Mentasti, E. 2011a. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques. Analytica Chimica Acta, 688, 122139.
Abollino, O., Malandrino, M., Giacomino, A.Mentasti, E. 2009. Investigation of metal pollution in soils by single and sequential extraction procedures. In Steinberg, R.V., ed. Contaminated soils: environmental impact, disposal and treatment. Hauppauge, NY: Nova, 139180.
Abollino, O., Malandrino, M., Giacomino, A.Mentasti, E. 2011b. The role of chemometrics in single and sequential extraction assays: a review. Part II. Extraction procedures, uni- and bivariate techniques and multivariate variable reduction techniques for pattern recognition. Analytica Chimica Acta, 688, 104121.
Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M.Barberis, R. 2006. Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air, and Soil Pollution, 173, 315338.
Bacon, J.R.Davidson, C.M. 2008. Is there a future for sequential chemical extraction? Analyst, 133, 2546.
Bonn, W.J., Gingele, F.X., Grobe, H., Mackensen, A.Fütterer, D.K. 1998. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 195211.
Braguglia, C.M., Campanella, L., Petronio, B.M.Scerbo, R. 1995. Sedimentary humic acids in the continental margin of the Ross Sea (Antarctica). International Journal of Environmental Analytical Chemistry, 60, 6170.
Cairns, S.D. 1992. Worldwide distribution of the Stylasteridae (Cnidaria: Hydrozoa). Scientia Marina, Barcelona, 56, 125130.
Davidson, C.M., Duncan, A.L., Littlejohn, D., Ure, A.M.Garden, L.M. 1998. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 4555.
Dymond, J., Suess, E.Lyle, M. 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163181.
Dymond, J., Collier, R., McManus, J., Honjo, S.Manganini, S. 1997. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? Paleoceanography, 12, 586593.
Eggleton, J.Thomas, K.V. 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973980.
El Bilali, L., Rasmussen, P.E., Hall, G.E.M.Fortin, D. 2002. Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17, 11711181.
Filgueiras, A.V., Lavilla, I.Bendicho, C. 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823857.
Frignani, M., Giglio, F., Accornero, A., Langone, L.Ravaioli, M. 2003. Sediment characteristics at selected sites of the Ross Sea continental shelf: does the sedimentary record reflect water column fluxes? Antarctic Science, 15, 133139.
Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453467.
Gleyzes, C., Tellier, S.Astruc, M. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451467.
Gupta, S.K., Vollmer, M.K.Krebs, R. 1996. The importance of mobile, mobilizable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of The Total Environment, 178, 1120.
Håkanson, L., Gyllenhammar, A.Brolin, A. 2004. A dynamic compartment model to predict sedimentation and suspended particulate matter in coastal areas. Ecological Modelling, 175, 353384.
Haussermann, V.Forsterra, G. 2007. Extraordinary abundance of hydrocorals (Cnidaria, Hydrozoa, Stylasteridae) in shallow water of the Patagonian fjord region. Polar Biology, 30, 487492.
Ianni, C., Magi, E., Soggia, F., Rivaro, P.Frache, R. 2010. Trace metal speciation in coastal and offshore sediments from Ross Sea (Antarctica). Microchemical Journal, 96, 203212.
Klump, J., Hebbeln, D.Wefer, G. 2000. The impact of sediment provenance on barium-based productivity estimates. Marine Geology, 169, 259271.
Larner, B.L., Seen, A.J., Palmer, A.S.Snape, I. 2007. A study of metal and metalloid contaminant availability in Antarctic marine sediments. Chemosphere, 67, 19671974.
Leiterer, M., Einax, J.W., Löser, C.Vetter, A. 1997. Trace analysis of metals in plant samples with inductively coupled plasma-mass spectrometry. Fresenius’ Journal of Analytical Chemistry, 359, 423426.
Licht, K.J., Lederer, J.R.Swope, R.J. 2005. Provenance of LGM glacial till (sand fraction) across the Ross embayment, Antarctica. Quaternary Science Reviews, 24, 14991520.
Lietz, W.Galling, G. 1989. Metals from sediments. Water Research, 23, 247252.
López-González, P.J.Gili, J.M. 2001. Rosgorgia inexspectata, new genus and species of subergorgiidae (Cnidaria, Octocorallia) from off the Antarctic Peninsula. Polar Biology, 24, 122126.
Malandrino, M., Mentasti, E., Giacomino, A., Abollino, O., Dinelli, E., Sandrini, S.Tositti, L. 2010. Temporal variability and environmental availability of inorganic constituents in an Antarctic marine sediment core from a polynya area in the Ross Sea. Toxicological and Environmental Chemistry, 92, 453475.
Malandrino, M., Abollino, O., Buoso, S., Casalino, C.E., Gasparon, M., Giacomino, A., La Gioia, C.Mentasti, E. 2009. Geochemical characterization of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchemical Journal, 92, 2131.
Massart, D.L., Vandenginste, B.G.M., Buydens, L.M.C., De Jono, S., Leqy, P.J.Smeyers-Verbeke, J. 1997a. Handbook of chemometrics and qualimetrics, part A. Amsterdam: Elsevier, 886 pp.
Massart, D.L., Vandenginste, B.G.M., Buydens, L.M.C., De Jono, S., Leqy, P.J.Smeyers-Verbeke, J. 1997b. Handbook of chemometrics and qualimetrics, part B. Amsterdam: Elsevier, 713 pp.
Nirel, P.M.V.Morel, F.M.M. 1990. Pitfalls of sequential extractions. Water Research, 24, 10551056.
Nissenbaum, A.Swaine, D.J. 1976. Organic matter-metal interactions in recent sediments: the role of humic substances. Geochimica et Cosmochimica Acta, 40, 809816.
Palmer, A.S., Snape, I., Townsend, A.T., Stark, J.S., Samson, C.Riddle, M.J. 2010. Sediment profile characterization at contaminated and reference locations in the Windmill Islands, East Antarctica. Marine Pollution Bulletin, 60, 15411549.
Pearson, P.N., Foster, G.L.Wade, B.S. 2009. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature, 461, 11101113.
Peña Cantero, A.L. 2008. Benthic hydroids (Cnidaria: Hydrozoa) from the Spanish Antarctic expedition Bentart 95. Polar Biology, 31, 451464.
Peña Cantero, A.L. 2009. Benthic hydroids (Cnidaria, Hydrozoa) from the Balleny Islands (Antarctica). Polar Biology, 32, 17431751.
Pfeifer, K., Kasten, S., Hensen, C.Schulz, H.D. 2001. Reconstruction of primary productivity from the barium contents in surface sediments of the South Atlantic Ocean. Marine Geology, 177, 1324.
Prasad, M.B.K., Ramanathan, A.L., Shrivastav, S.K.Anshumali Saxena, R. 2006. Metal fractionation studies in surfacial and core sediments in the Achankovil river basin in India. Environmental Monitoring and Assessment, 121, 77102.
Quevauviller, P. 2002. Operationally-defined extraction procedures for soil and sediment analysis. Part 3: new CRMs for trace-element extractable contents. Trends in Analytical Chemistry, 21, 774785.
Ramos, A.A., Inoue, Y.Ohde, S. 2004. Metal contents in Porites corals: anthropogenic input of river run-off into a coral reef from an urbanized area, Okinawa. Marine Pollution Bulletin, 48, 281294.
Rao, C.R.M., Sahuquillo, A.Lopez Sanchez, J.F. 2008. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291333.
Reitz, A., Pfeifer, K., de Lange, G.J.Klump, J. 2004. Biogenic barium and the detrital Ba/Al ratio: a comparison of their direct and indirect determination. Marine Geology, 204, 289300.
Rubio, B., Nombela, M.A.Vilas, F. 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40, 968980.
Sahuquillo, A., López-Sánchez, J.F., Rubio, R., Rauret, G., Thomas, R.P., Davidson, C.M.Ure, A.M. 1999. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317327.
Sala, M., Delmonte, B., Frezzotti, M., Proposito, M., Scarchilli, C., Maggi, V., Artioli, G., Dapiaggi, M., Marino, F., Ricci, P.C.De Giudici, G. 2008. Evidence of calcium carbonates in coastal (Talos Dome and Ross Sea area) East Antarctica snow and firn: environmental and climatic implications. Earth and Planetary Science Letters, 271, 4352.
Sohlenius, G.Westman, P. 1998. Salinity and redox alternations in the northwestern Baltic proper during the late Holocene. Boreas, 27, 101114.
Sutherland, R.A.Tack, F.M.G. 2003. Fractionation of Cu, Pb and Zn in certified reference soils srm 2710 and srm 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8, 3750.
Tessier, A., Campbell, P.G.C.Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace-metals. Analytical Chemistry, 51, 844851.
Turekian, K.K.Wedepohl, K.H. 1961. Distribution of the elements in some major units of the earths crust. Geological Society of America Bulletin, 72, 175191.
Uluturhan, E., Kontas, A.Can, E. 2011. Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Marine Pollution Bulletin, 62, 19891997.
Wersin, P., Höhener, P., Giovanoli, R.Stumm, W. 1991. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chemical Geology, 90, 233252.
Zabel, M., Bickert, T., Dittert, L.Haese, R.R. 1999. Significance of the sedimentary Al:Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic. Paleoceanography, 14, 789799.


Type Description Title
Supplementary materials

CASALINO Supplementary Material

 PDF (224 KB)
224 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed