Skip to main content Accessibility help
×
Home

Structurally preserved fungi from Antarctica: diversity and interactions in late Palaeozoic and Mesozoic polar forest ecosystems

  • Carla J. Harper (a1) (a2), Thomas N. Taylor (a2), Michael Krings (a1) (a2) and Edith L. Taylor (a2)

Abstract

Chert and silicified wood from the Permian through Cretaceous of Antarctica contain abundant information on fungal diversity and plant–fungal interactions. The chert deposits represent a particularly interesting setting for the study of plant–fungal interactions because they preserve remains of distinctive high latitude forest ecosystems with polar light regimes that underwent a profound climate change from icehouse to greenhouse conditions. Moreover, some of the cherts and wood show the predominance of extinct groups of seed plants (e.g. Glossopteridales, Corystospermales). Over the past 30 years, documentation of fossil fungi from Antarctica has shifted from a by-product of plant descriptive studies to a focused research effort. This paper critically reviews the published record of fungi and fungal associations and interactions in the late Palaeozoic and Mesozoic cherts and silicified wood from Antarctica; certain fungal palynomorphs and fungal remains associated with adpression fossils and cuticles are also considered. Evidence of mutualistic (mycorrhizal), parasitic and saprotrophic fungi associated with plant roots, stems, leaves and reproductive organs is presented, together with fungi occurring within the peat matrix and animal–fungus interactions. Special attention is paid to the morphology of the fungi, their systematic position and features that can be used to infer fungal nutritional modes.

Copyright

Corresponding author

References

Hide All
Almeida, R.T. & Schenck, N.C. 1990. A revision of the genus Sclerocystis (Glomaceae, Glomales). Mycologia, 82, 703714.
Ander, P. & Eriksson, K.E. 1977. Selective degradation of wood components by white rot fungi. Physiologia plantarum, 41, 239248.
Arnold, A.E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21, 5166.
Askin, R.A. 1989. Endemism and heterochroneity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Islands, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. In Crame, J.A., ed. Origins and evolution of the Antarctic biota. Special Publication of the Geological Society of London, No. 47, 107–119.
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany, 85, 704713.
Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J. & Eichlerová, I. 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 6, 111.
Ballance, P.F. & Watters, W.A. 1971. Mawson Diamictite and the Carapace Sandstone, formations of the Ferrar Group at Allan Hills and Carapace Nunatak, Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 14, 512527.
Barrett, P.J. 1969. Stratigraphy and petrology of the mainly fluviatile Permian and Triassic Beacon rocks, Beardmore Glacier area, Antarctica. Institute of Polar Studies Report No. 34. Ohio State University, 132 pp.
Bennett, A.J.R. & Taylor, G.H. 1972. Coals from the vicinity of the Prince Charles Mountains. In Adie, R.J., ed. Antarctic geology and geophysics. Oslo: Universitetsforlaget, 591598.
Bergene, J.A., Taylor, E.L. & Taylor, T.N. 2013. Dordrechtites arcanus sp. nov., an anatomically preserved gymnospermous reproductive structure from the Middle Triassic of Antarctica. International Journal of Plant Sciences, 174, 250265.
Blanchette, R.A. 1984. Screening wood decayed by white rot fungi for preferential lignin degradation. Applied and Environmental Microbiology, 48, 647653.
Bomfleur, B., Schneider, J., Schöner, R., Viereck-Götte, L. & Kerp, H. 2007. Exceptionally well-preserved Triassic and early Jurassic floras from north Victoria Land, Antarctica. Extended Abstract 034. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES editorial team., eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academic Press, 4 pp.
Bomfleur, B., Schneider, J., Schöner, R., Viereck, L. & Kerp, H. 2011. Fossil sites in the continental Victoria and Ferrar groups (Triassic-Jurassic) of north Victoria Land, Antarctica. Polarforschung, 80, 8899.
Bomfleur, B., Decombeix, A.-L., Escapa, I.H., Schwendemann, A.B. & Axsmith, B. 2013. Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. International Journal of Plant Sciences, 174, 425444.
Bomfleur, B., Decombeix, A.-L., Schwendemann, A.B., Escapa, I.H., Taylor, E.L., Taylor, T.N. & McLoughlin, S. 2014a. Habit and ecology of the Petriellales, an unusual group of seed plants form the Triassic of Gondwana. International Journal of Plant Sciences, 175, 10621075.
Bomfleur, B., Schöner, R., Schneider, J.W., Viereck, L., Kerp, H. & McKellar, J.L. 2014b. From the Transantarctic Basin to the Ferrar Large Igneous Province: new palynostratigraphic age constraints for Triassic-Jurassic sedimentation and magmatism in East Antarctica. Review of Palaeobotany and Palynology, 207, 1837.
Bowman, V.C., Francis, J.E. & Riding, J.B. 2013. Late Cretaceous winter sea ice in Antarctica? Geology, 41, 12271230.
Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B. & Swindles, G.T. 2014. Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctica Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 2647.
Bromfield, K., Burrett, C.F., Leslie, R.A. & Meffre, S. 2007. Jurassic volcaniclastic–basaltic andesite–dolerite sequence in Tasmania: new age constraints for fossil plants from Luna River. Australian Journal of Earth Sciences, 54, 965974.
Bultman, T.L. & Mathews, P.L. 1996. Mycophagy by a millipede and its possible impact on an insect-fungus mutualism. Oikos, 75, 6774.
Cafaro, M.J. 2005. Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Molecular Phylogenetics and Evolution, 35, 2134.
Cantrill, D.J. 2000. A petrified cycad trunk from the Late Cretaceous of the Larsen Basin, Antarctica. Alcheringa, 24, 307318.
Cantrill, D.J. & Drinnan, A.N. 1994. Late Triassic megaspores from the Amery Group, Prince Charles Mountains, East Antarctica. Alcheringa, 18, 7178.
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Review of Palaeobotany and Palynology, 115, 119145.
Cantrill, D.J. & Poole, I. 2013. The vegetation of Antarctica through geological time. Cambridge: Cambridge University Press, 490 pp.
Carroll, G. 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69, 29.
Chapman, R.L. & Good, B.H. 1983. Subaerial symbiotic green algae: interactions with vascular plant hosts. In Goff, L.J., ed. Algal symbiosis: a continuum of interaction strategies. Cambridge: Cambridge University Press, 173204.
Chen, K., Stilwell, J.D. & May, C. 2015. Palaeoenvironmental reconstruction of Livingston Island, Antarctic Peninsula, in the Early Cretaceous: interpretations from the Walker Bay erratics. Alcheringa, 39, 465476.
Collinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. & Veevers, J.J. 1994. Permian-Triassic Transantarctic basin. Geological Society of America Memoirs, 184, 173222.
Cooke, R.C. & Rayner, A.D. 1984. Ecology of saprotrophic fungi. Longman, NY: Addison-Wesley Educational Publishers, 438 pp.
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature, 184, 17821785.
Decombeix, A.-L., Taylor, E.L. & Taylor, T.N. 2009. Secondary growth in Vertebraria roots from the Late Permian of Antarctica: a change in developmental timing. International Journal of Plant Sciences, 170, 644656.
Demchenko, K., Winzer, T., Stougaard, J., Parniske, M. & Pawlowski, K. 2004. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytologist, 163, 381392.
Dick, M.W. 1992. Patterns of phenology in populations of zoosporic fungi. In Carroll, G. & Wicklow, D., eds. The fungal community, its organization and role in the ecosystem, 2nd Ed. New York, NY: Marcel Dekker, 355382.
Dick, M.W. 2001. Straminipilous fungi: systematics of the peronosporomycetes, including accounts of the marine straminipilous protists, the plasmodiophorids, and similar organisms. Dordrecht: Kluwer Academic Publishers, 670 pp.
Di Pasquo, M. & Martin, J.E. 2013. Palynoassemblages associated with a theropod dinosaur from the Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research, 45, 135154.
Dotzler, N., Krings, M., Agerer, R., Galtier, J. & Taylor, T.N. 2008. Combresomyces cornifer gen. sp. nov., an endophytic peronosporomycete in Lepidodendron from the Carboniferous of central France. Mycological Research, 112, 11071114.
Duane, A.M. 1996. Palynology of the Byers Group (Late Jurassic–Early Cretaceous) of Livingston and Snow Islands, Antarctic Peninsula: its biostratigraphical and palaeoenvironmental significance. Review of Palaeobotany and Palynology, 91, 241281.
Dutra, T.L. & Batten, D.J. 2000. Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. Cretaceous Research, 21, 181209.
Eklund, H., Cantrill, D.J. & Francis, J.E. 2004. Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. Cretaceous Research, 25, 211228.
Elliot, D.H. & Fleming, T.H. 2008. Physical volcanology and geological relationships of the Jurassic Ferrar Large Igneous Province, Antarctica. Journal of Volcanology and Geothermal Research, 172, 2037.
Eriksson, K.E.L., Blanchette, R.A. & Ander, P. 1990. Morphological aspects of wood degradation by fungi and bacteria. In Eriksson, K.E.L., Blanchette, R.A. & Ander, P. Microbial and enzymatic degradation of wood and wood components. Berlin: Springer, 187.
Escapa, I.H., Taylor, E.L., Cúneo, R., Bomfleur, B., Bergene, J., Serbet, R. & Taylor, T.N. 2011. Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. PALAIOS, 26, 522544.
Falcon-Lang, H.J. & Cantrill, D.J. 2001. Gymnosperm woods from the Cretaceous (mid-Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc. Cretaceous Research, 22, 277293.
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetlands Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. PALAIOS, 17, 491506.
Falcon-Lang, H.J., Cantrill, D.J. & Nichols, G.J. 2001. Biodiversity and terrestrial ecology of a mid-Cretaceous, high-latitude floodplain, Alexander Island, Antarctica. Journal of the Geological Society, 158, 709724.
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani, 15, 285388.
Fogel, R. & Trappe, J.M. 1978. Fungus consumption mycophagy by small animals. Northwest Science, 52, 131.
Foster, C.B., Stephenson, M.H., Marshall, C., Logan, G.A. & Greenwood, P.F. 2002. A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology, 26, 3558.
Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, A.-M. & Thorn, V. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES editorial team., eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academic Press, 1928.
Gair, H.S., Norris, G. & Ricker, J. 1965. Early Mesozoic microfloras from Antarctica. New Zealand Journal of Geology and Geophysics, 8, 231235.
Garcia Massini, J.L. 2007a. A glomalean fungus from the Permian of Antarctica. International Journal of Plant Sciences, 168, 673678.
Garcia Massini, J.L. 2007b. A possible endoparasitic chytridiomycete fungus from the Permian of Antarctica. Palaeontologia Electronica, 10, http://palaeo-electronica.org/2007_3/121/index.html.
Gerdemann, J.W. & Trappe, J.M. 1974. The Endogonaceae in the Pacific Northwest. Mycological Memoir, No. 5, 176.
Godfrey, R.M. 1957. Studies of British species of Endogone. I. Morphology and taxonomy. Transactions of the British Mycological Society, 40, 117135.
Goodman, R.M. & Weisz, J.B. 2002. Plant-microbe symbioses: an evolutionary survey. In Staley, J.T. & Reysenbach, A.L., eds. Biodiversity of microbial life. Foundation of earth’s biosphere. New York, NY: Wiley-Liss, 237287.
Gunn, B.M. & Warren, G. 1962. Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica. New Zealand Geological Survey Bulletin, 71, 1157.
Harper, C.J. 2015. The diversity and interactions of fungi from the Paleozoic and Mesozoic of Antarctica. PhD thesis. University of Kansas, 345 pp. [Unpublished].
Harper, C.J., Bomfleur, B., Decombeix, A.-L., Taylor, E.L., Taylor, T.N. & Krings, M. 2012. Tylosis formation and fungal interactions in an Early Jurassic conifer from northern Victoria Land, Antarctica. Review of Palaeobotany and Palynology, 175, 2531.
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2013. Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica. Review of Palaeobotany and Palynology, 192, 2231.
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2015a. Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctic. Review of Palaeobotany and Palynology, 215, 7684.
Harper, C.J., Taylor, T.N., Krings, M. & Taylor, E.L. 2015b. Fungi associated with Glossopteris (Glossopteridales) leaves from the Permian of Antarctica: a preliminary report. Zitteliana, A55, 107114.
Hawksworth, D.L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological research, 95, 641655.
Hergt, J.M. & Brauns, C.M. 2001. On the origin of the Tasmanian dolerites. Australian Journal of Earth Sciences, 48, 543549.
Hermsen, E.J., Taylor, E.L. & Taylor, T.N. 2009. Morphology and ecology of the Antarcticycas plant. Review of Palaeobotany and Palynology, 153, 108123.
Hernández-Castillo, G.R., Rothwell, G.W. & Mapes, G. 2001. Compound pollen cone in a Paleozoic conifer. American Journal of Botany, 88, 11391142.
Herrera, C.M. & Pellmyr, O. eds. 2009. Plant-animal interactions: an evolutionary approach. Malden, MA: John Wiley & Sons, 328 pp.
Hieger, T.J., Serbet, R., Harper, C.J., Taylor, T.N., Taylor, E.L. & Gulbranson, E.L. 2015. Cheirolepidiaceous diversity: an anatomically preserved pollen cone from the Lower Jurassic of southern Victoria Land, Antarctica. Review of Palaeobotany and Palynology, 220, 7887.
Holdgate, G.R., McLoughlin, S., Drinnan, A.N., Finkelman, R.B., Willett, J.C. & Chiehowsky, L.A. 2005. Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology, 63, 156177.
Hutchinson, S.A. 1955. A review of the genus Sporocarpon Williamson. Annals of Botany, 19, 425435.
Iglesias, A., Artabe, A.E. & Morel, E.M. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnaean Society, 103, 409422.
Jefferson, T.H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology, 25, 681708.
Jefferson, T.H. 1987. The preservation of conifer wood: examples from the Lower Cretaceous of Antarctica. Palaeontology, 30, 233249.
Jefferson, T.H., Siders, M.A. & Haban, M.A. 1983. Jurassic trees engulfed by lavas of the Kirkpatrick Basalt Group, northern Victoria Land. Antarctic Journal of the United States, 18 (5), 1416.
Johnson, N.C., Graham, J.H. & Smith, F.A. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575586.
Kidder, D.L. & Worsley, T.R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 207237.
Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. , eds. 2008. Dictionary of the fungi, 10th Ed. Wallingford: CAB International Publishing, 771 pp.
Kirk, T.K. & Farrell, R.L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465505.
Klavins, S.D., Taylor, E.L., Krings, M. & Taylor, T.N. 2003. Gymnosperms from the Middle Triassic of Antarctica: the first structurally preserved cycad pollen cone. International Journal of Plant Sciences, 164, 10071020.
Krings, M., Taylor, T.N. & Dotzler, N. 2013. Fossil evidence of the zygomycetous fungi. Persoonia, 30, 110.
Krings, M., Taylor, T.N. & White, J.F. Jr. 2011. Fungal sporocarps from the Carboniferous: an unusual specimen of Traquairia . Review of Palaeobotany and Palynology, 168, 16.
Krings, M., Taylor, T.N., Dotzler, N. & Persichini, G. 2012. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica. Mycologia, 104, 835844.
Krings, M., Taylor, T.N., Taylor, E.L., Kerp, H. & Dotzler, N. 2014. First record of a fungal “sporocarp” from the Lower Devonian Rhynie chert. Palaeobiodiversity and Palaeoenvironments, 94, 221227.
Lawrence, J.F. & Milner, R.J. 1996. Associations between arthropods and fungi. Fungi of Australia, 1, 137202.
Lawver, L.A., Gahagan, L.M. & Coffin, M.E. 1992. The development of paleoseaways around Antarctica. Antarctic Research Series, 56, 730.
Lindström, S. & McLoughlin, S. 2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 145, 89122.
Leben, C. 1965. Epiphytic microorganisms in relation to plant disease. Annual Review of Phytopathology, 3, 209230.
Marschner, H. & Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89102.
McLoughlin, S. & Drinnan, A.N. 1996. Anatomically preserved Permian Noeggerathiopsis leaves from East Antarctica. Review of Palaeobotany and Palynology, 92, 207227.
McLoughlin, S., Lindström, S. & Drinnan, A.N. 1997. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9, 281298.
McLoughlin, S., Drinnan, A.N., Slater, B.J. & Hilton, J. 2015. Paurodendron stellatum: a new Permian permineralized herbaceous lycopsid from the Prince Charles Mountains, Antarctica. Review of Palaeobotany and Palynology, 220, 115.
Mendgen, K., Hahn, M. & Deising, H. 1996. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34, 367386.
Merlotti, S. & Kurzawe, F. 2006. Estudo taxonômico do gênero Australoxylon Marguerier 1973 com a descrição de A. catarinensis sp. nov. para o Permiano inferior, Bacia Do Paraná, Brasil. Revista Brasileira de Paleontologia, 9, 7381.
Meyer-Berthaud, B. & Taylor, T.N. 1991. A probable conifer with podocarpacean affinities from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 67, 179198.
Morton, J.B. 1990. Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia, 82, 192207.
Mussa, D. 1978. On the anatomy of wood showing affinities with the genus Vertebraria Royle from the Irati Formation, State of São Paulo, Brazil. Boletim, Instituto de Geociências, Universidade de São Paulo, 9, 153201.
Neish, P.G., Drinnan, A.N. & Cantrill, D.J. 1993. Structure and ontogeny of Vertebraria from silicified Permian sediments in East Antarctica. Review of Palaeobotany and Palynology, 79, 221243.
Norstog, K.J. & Nicholls, T.J. 1997. The biology of the cycads. Ithaca, NY: Cornell University Press, 363 pp.
Oehl, F., Redecker, D. & Sieverding, E. 2005. Glomus badium, a new sporocarpic mycorrhizal fungal species from European grasslands with higher soil pH. Journal of Applied Botany and Food Quality, 79, 3843.
Osborn, J.M., Taylor, T.N. & White, J.F. 1989. Palaeofibulus gen. nov., a clamp-bearing fungus from the Triassic of Antarctica. Mycologia, 81, 622626.
Osborn, J.M., Phipps, C.J., Taylor, T.N. & Taylor, E.L. 2000. Structurally preserved sphenophytes from the Triassic of Antarctica: reproductive remains of Spaciinodum . Review of Palaeobotany and Palynology, 111, 225235.
Padgett, D.E., Kendrick, A.S., Hearth, J.H. & Webster, W.D. 1988. Influence of salinity, temperature, and nutrient availability on the respiration of saprolegniaceous fungi (Oomycetes). Holarctic Ecology, 11, 119126.
Palukaitis, P., Carr, J.P. & Schoelz, J.E. 2008. Plant-virus interactions. Methods in Molecular Biology, 451, 319.
Pant, D.D. 2002. Fossil history and phylogeny. In Pant, D.D. & Osborne, R., eds. An introduction to gymnosperms, cycads and cycadales. Lucknow: Birbal Sahni Institute of Palaeobotany, 267307.
Pearce, R.B. 1996. Antimicrobial defences in the wood of living trees. New Phytologist, 132, 203233.
Perovich, N.E. & Taylor, E.L. 1989. Structurally preserved fossil plants from Antarctica. 4. Triassic ovules. American Journal of Botany, 76, 992999.
Phipps, C.J. & Taylor, T.N. 1996. Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia, 88, 707714.
Phipps, C.J., Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 2000. Gleichenipteris antarcticus gen. et sp. nov. from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 108, 7583.
Pirozynski, K.A. & Malloch, D.W. 1975. The origin of land plants: matter of mycotrophism. Biosystems, 6, 153164.
Plumstead, E.P. 1962. Geology. 2. Fossil floras of Antarctica (with an appendix on Antarctic fossil wood by R. Kräusel). Trans-Antarctic Expedition 1955–1958. Scientific Report No. 9, Geology. London: Trans-Antarctic Expedition Committee, 154 pp.
Plumstead, E.P. 1975. A new assemblage of plant fossils from Milorgfjella, Dronning Maud Land. British Antarctic Survey Scientific Reports, 83, 130.
Poole, I. & Cantrill, D.J. 2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Special Publication of the Geological Society of London, No. 258, 6381.
Poole, I. & Francis, J.E. 1999. The first record of fossil atherospermataceous wood from the Upper Cretaceous of Antarctica. Review of Palaeobotany and Palynology, 107, 97107.
Poole, I. & Francis, J.E. 2000. The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Annals of Botany, 85, 307315.
Poole, I., Cantrill, D.J., Hayes, P. & Francis, J. 2000. The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica? Review of Palaeobotany and Palynology, 111, 127144.
Preto, N., Kustatscher, E. & Wagnall, P.B. 2010. Triassic climates – state of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 10.1016/j.palaeo.2010.03.015.
Pujana, R.R., Marenssi, S.A. & Santillana, S.N. 2015. Fossil woods from the Cross Valley Formation (Paleocene of Western Antarctica): Araucariaceae-dominated forests. Review of Palaeobotany and Palynology, 222, 5666.
Read, D.J., Duckett, J.G., Francis, R., Ligrone, R. & Russell, A. 2000. Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society, B355, 815831.
Redman, R.S., Dunigan, D.D. & Rodriguez, R.J. 2001. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist, 151, 705716.
Rigby, J.F. 1972. The flora of the Kaloola Member of the Baralaba Coal Measures, Central Queensland. Geological Survey of Queensland, 352, 112.
Riley, T.R., Curtis, M.L., Leat, P.T., Watkeys, M.K., Duncan, R.A., Millar, I.L. & Owens, W.H. 2006. Overlap of Karoo and Ferrar magma types in KwaZulu-Natal, South Africa. Journal of Petrology, 47, 541566.
Rodriguez, R.J., White, J.F., Arnold, A.E. & Redman, R.S. 2009. Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.
Rössler, R., Philippe, M., van Konijnenburg-van Cittert, J.H.A. et al. 2014. Which name(s) should be used for Araucaria-like fossil wood? Results of a poll. Taxon, 63, 177184.
Rothwell, G.W., Mapes, G. & Hernández-Castillo, G.R. 2005. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54, 733750.
Schopf, J.M. 1970. Petrified peat from a Permian coal bed in Antarctica. Science, 169, 274277.
Schopf, J.M. 1975. Modes of fossil preservation. Review of Palaeobotany and Palynology, 20, 2753.
Schwarze, F.W.M.R., Engels, J., Mattheck, C. & Linnard, W. 2000. Fungal strategies of wood decay in trees. Berlin: Springer, 185 pp.
Schwendemann, A.B., Taylor, T.N., Taylor, E.L. & Krings, M. 2010a. Organization, anatomy, and fungal endophytes of a Triassic conifer embryo. American Journal of Botany, 97, 18731883.
Schwendemann, A.B., Decombeix, A.-L., Taylor, T.N., Taylor, E.L. & Krings, M. 2011. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. Proceedings of the National Academy of Sciences of the United States of America, 108, 13 63013 634.
Schwendemann, A.B., Taylor, T.N., Taylor, E.L., Krings, M. & Dotzler, N. 2009. Combresomyces cornifer from the Triassic of Antarctica: evolutionary stasis in the Peronosporomycetes. Review of Palaeobotany and Palynology, 154, 15.
Schwendemann, A.B., Taylor, T.N., Taylor, E.L., Krings, M. & Osborn, J.M. 2010b. Modern traits in early Mesozoic sphenophytes: the Equisetum-like cones of Spaciinodum collinsonii with in situ spores and elaters from the Middle Triassic of Antarctica. In Gee, C.T., ed. Plants in Mesozoic time: morphological innovation, phylogeny, ecosystems. Bloomington, IN: Indiana University Press, 1534.
Seward, A.C. & Ford, S.O. 1906. The Araucariae, recent and extinct. Philosophical Transactions of the Royal Society, B198, 305411.
Slater, B.J., McLoughlin, S. & Hilton, J. 2012. Animal–plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 363, 109126.
Slater, B.J., McLoughlin, S. & Hilton, J. 2013. Peronosporomycetes (Oomycota) from a Middle Permian permineralised peat within the Bainmedart coal measures, Prince Charles Mountains, Antarctica. PLoS ONE, 8, 10.1371/journal.pone.0070707.
Slater, B.J., McLoughlin, S. & Hilton, J. 2015. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Research, 27, 14461473.
Smoot, E.L., Taylor, T.N. & Delevoryas, T. 1985. Structurally preserved fossil plants from Antarctica. 1. Antarcticycas gen. nov. a Triassic cycad stem from the Beardmore Glacier area. American Journal of Botany, 72, 14101423.
Song, Z.C. & Cao, L. 1994. Late Cretaceous fungal spores from King George Island, Antarctica. In Shen, Y.B., ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island, Antarctica. Beijing: Science Press. State Antarctic Committee, Monograph 3, 37–49. [In Chinese, English abstract and description of new genus and species].
Soto, M.J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J. & Olivares, J. 2009. Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cellular microbiology, 11, 381388.
Southworth, D., ed. 2012. Biocomplexity of plant-fungal interactions, 1st Ed. Oxford: Wiley-Blackwell, 220 pp.
Steiner, M.B., Eshet, Y., Rampino, M.R. & Schwindt, D.M. 2003. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405414.
Stokland, J.N., Siitonen, J. & Jonsson, B.G. 2012. Biodiversity in dead wood. Cambridge: Cambridge University Press, 509 pp.
Strullu-Derrien, C., Kenrick, P., Rioult, J.P. & Strullu, D.G. 2010. Evidence of parasitic Oomycetes (Peronosporomycetes) infecting the stem cortex of the Carboniferous seed fern Lyginopteris oldhamia . Proceedings of the Royal Society, B278, 675680.
Strullu-Derrien, C., Kenrick, P., Pressel, S., Duckett, J.G., Rioult, J.-P. & Strullu, D.-G. 2014. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights ancestral plant–fungal symbioses. New Phytologist, 203, 964979.
Stubblefield, S.P. & Taylor, T.N. 1985. Fossil fungi in Antarctic wood. Antarctic Journal of the United States, 20 (5), 78.
Stubblefield, S.P. & Taylor, T.N. 1986. Wood decay in silicified gymnosperms from Antarctica. Botanical Gazette, 147, 116125.
Stubblefield, S.P., Taylor, T.N. & Beck, C.B. 1985. Studies of Paleozoic fungi. 4. Wood-decaying fungi in Callixylon newberryii from the Upper Devonian. American Journal of Botany, 72, 17651773.
Stubblefield, S.P., Taylor, T.N. & Seymour, R.L. 1987a. A possible endogonaceous fungus from the Triassic of Antarctica. Mycologia, 79, 905906.
Stubblefield, S.P., Taylor, T.N. & Trappe, J.M. 1987b. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. American Journal of Botany, 74, 19041911.
Stubblefield, S.P., Taylor, T.N. & Trappe, J.M. 1987c. Fossil mycorrhizae: a case for symbiosis. Science, 237, 5960.
Swain, T. 1977. Secondary compounds as protective agents. Annual Review of Plant Physiology and Plant Molecular Biology, 28, 479501.
Talbot, J.M., Allison, S.D. & Treseder, K.K. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955963.
Taylor, E.L. & Taylor, T.N. 1990. Structurally preserved Permian and Triassic floras from Antarctica. In Taylor, T.N. & Taylor, E.L., eds. Antarctic paleobiology: its role in the reconstruction of Gondwana. New York, NY: Springer, 149163.
Taylor, E.L., Taylor, T.N. & Collinson, J.W. 1989. Depositional setting and paleobotany of Permian and Triassic permineralized peat from the central Transantarctic Mountains, Antarctica. International Journal of Coal Geology, 12, 657679.
Taylor, E.L., Taylor, T.N., Collinson, J.W. & Elliot, D.H. 1986. Structurally preserved Permian plants from Skaar Ridge, Beardmore Glacier region. Antarctic Journal of the United States, 21 (5), 2728.
Taylor, T.N. 1990. The fossil fungi of Antarctica. In Kun, G., ed. Proceedings on the International Symposium on Antarctic Research. Hangzhou, Peoples Republic of China, May 1989. Tianjin: China Ocean Press, 103108.
Taylor, T.N. & Stubblefield, S.P. 1987. A fossil mycoflora from Antarctica. In Actas VII Simposio Argentino Paleobotánica y Palinología (Buenos Aires), 187191.
Taylor, T.N. & White, J.F. 1989. Fossil fungi (Endogonaceae) from the Triassic of Antarctica. American Journal of Botany, 76, 389396.
Taylor, T.N., Krings, M. & Taylor, E.L. 2015. Fossil fungi. London: Academic Press, 382 pp.
Taylor, T.N., Taylor, E.L. & Krings, M. 2009. Paleobotany: the biology and evolution of fossil plants. New York, NY: Academic Press, 1230 pp.
Truswell, E.M. 1989. Cretaceous and Tertiary vegetation in Antarctica: a palynological perspective. In Taylor, T.N. & Taylor, E.L., eds. Antarctic paleobiology: its role in the reconstruction of Gondwana. New York, NY: Springer, 7188.
Upchurch, G.R. & Askin, R.A. 1989. Latest Cretaceous and earliest Tertiary dispersed plant cuticles from Seymour Island. Antarctic Journal of the United States, 24 (5), 710.
Vajda, V. & McLoughlin, S. 2007. Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary – a tool for unraveling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology, 144, 99112.
Van Loon, L.C., Rep, M. & Pieterse, C.M.J. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135162.
Visscher, H., Sephton, M.A. & Looy, C.V. 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39, 883886.
Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R. & Traverse, A. 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93, 21552158.
Walker, C. & Trappe, J.M. 1993. Names and epithets in the Glomales and Endogonales. Mycological Research, 97, 339344.
Wang, B. & Qiu, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299363.
Wardle, D.A. & Lindahl, B.D. 2014. Disentangling global soil fungal diversity. Science, 346, 10521053.
Weaver, L., McLoughlin, S. & Drinnan, A.N. 1997. Fossil woods from the Upper Permian Bainmedart coal measures, northern Prince Charles Mountains, East Antarctica. AGSO Journal of Geology and Geophysics, 16, 655676.
White, J.F. & Taylor, T.N. 1988. Triassic fungus from Antarctica with possible Ascomycetous affinities. American Journal of Botany, 75, 14951500.
White, J.F. & Taylor, T.N. 1989a. An evaluation of sporocarp structure in the Triassic fungus Endochaetophora . Review of Palaeobotany and Palynology, 61, 341345.
White, J.F. & Taylor, T.N. 1989b. Triassic fungi with suggested affinities to the Endogonales (Zygomycotina). Review of Palaeobotany and Palynology, 61, 5361.
White, J.F. & Taylor, T.N. 1989c. A trichomycete-like fossil from the Triassic of Antarctica. Mycologia, 81, 643646.
White, J.F. & Taylor, T.N. 1991. Fungal sporocarps from Triassic peat deposits in Antarctica. Review of Palaeobotany and Palynology, 67, 229236.
White, M.E. 1969. Permian flora from the Beaver Lake area, Prince Charles Mountains, Antarctica. 2. Plant fossils. Bureau of Mineral Resources, Geology and Geophysics, 126, 1318.
Williams, L.A. & Crerar, D.A. 1985. Silica diagenesis. 2. General mechanisms. Journal of Sedimentary Petrology, 55, 312321.
Williams, L.A., Parks, G.A. & Crerar, D.A. 1985. Silica diagenesis. 1. Solubility controls. Journal of Sedimentary Petrology, 55, 301311.
Yao, Y.-J., Pegler, D.N. & Young, T.W.K. 1996. Genera of endogonales. Kew, London: Royal Botanic Gardens, 229 pp.
Zelmer, D.A. 1998. An evolutionary definition of parasitism. International Journal for Parasitology, 28, 531533.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed