Skip to main content Accessibility help
×
Home

In situ growth rate estimates of Southern Ocean krill, Thysanoessa macrura

  • Jake R. Wallis (a1) (a2), Jessica E. Melvin (a1) (a2), Robert King (a3) and So Kawaguchi (a2) (a3)

Abstract

Growth, which is intrinsically linked to environmental conditions including temperature and food availability are highly variable both temporally and spatially. Estimates of growth rates of the Southern Ocean euphausiid Thysanoessa macrura are currently restricted to limited studies which rely upon repeated sampling and length-frequency analysis to quantify growth rates. The instantaneous growth method (IGR) was used to measure the growth rate of T. macrura successfully in the southern Kerulen Plateau region during summer, providing the first IGR parameters for the Southern Ocean euphausiid species. Results of the four-day IGR incubation indicate a period of low somatic growth for adult T. macrura. Males had a longer intermoult period (IMP) (62 days) than females (42 days), but the sexes exhibited similar daily growth rates of 0.011 mm day−1 and 0.012 mm day−1 respectively. Juveniles exhibited the fastest growth, with an IMP of 13 days and daily growth rate of 0.055 mm day−1 indicating a prolonged growth season, similar to the Antarctic krill E. superba. Consequently, we highlight the usability of the IGR method and strongly encourage its use in developing a comprehensive understanding of spatial and seasonal growth patterns of T. macrura.

Copyright

Corresponding author

References

Hide All
Baker, A.C., Clarke, M.R. & Harris, M.J. 1973. The N.I.O. combination net (RMT 1 + 8) and further developments of rectangular midwater trawls. Journal of the Marine Biological Association of the United Kingdom, 53, 176184.
Driscoll, R., Reiss, C. & Hentschel, B. 2015. Temperature-dependant growth of Thysanoessa macrura: inter-annual and spatial variability around Elephant Island, Antarctica. Marine Ecology Progress Series, 529, 10.3354/meps11291.
Fäber-Lorda, J. 1990. Somatic length relationships and ontogenetic morphometric differentiation of Euphausia superba and Thysanoessa macrura of the southwest Indian Ocean during summer (February 1981). Deep-Sea Research A, 37, 11351143.
Fäber-Lorda, J. 1994. Length-weight relationships and coefficient of condition of Euphausia superba and Thysanoessa macrura (Crustacea: Euphausiacea) in southwest Indian Ocean during summer. Marine Biology, 118, 645650.
Hagen, W. & Kattner, G. 1998. Lipid metabolism of the Antarctic euphausiid Thysanoessa macrura and its ecological implications. Limnology and Oceanography, 43, 18941901.
Haraldsson, M. & Siegel, V. 2014. Seasonal distribution and life history of Thysanoessa macrura (Euphausiacea, Crustacea) in high latitude waters of the Lazarev Sea, Antarctica. Marine Ecology Progress Series, 495, 10.3354/meps10553.
Kawaguchi, S., Candy, S., King, R., Naganobu, M. & Nicol, S. 2006. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region. Marine Ecology Progress Series, 306, 115.
Melvin, J., Kawaguchi, S., King, R. & Swadling, K. In press. The carapace matters: refinement of the instantaneous growth rate method for Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). Journal of Crustacean Biology, 10.1093/jcbiol/ruy069.
Motoda, S. 1959. Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries, Hokkaido University, 7, 7394.
Nicol, S. 2000. Understanding krill growth and aging: the contribution of experimental studies. Canadian Journal of Fisheries and Aquatic Sciences, 57, 168177.
Nicol, S., Stolp, M., Cochran, T., Geijsel, P. & Marshall, J. 1992. Growth and shrinkage of Antarctic krill Euphausia superba from the Indian Ocean sector of the Southern Ocean during summer. Marine Ecology Progress Series, 89, 175181.
Nordhausen, W. 1992. Distribution and growth of larval and adult Thysanoessa macrura (Euphausiacea) in the Bransfield Strait Region, Antarctica. Marine Ecology Progress Series, 83, 185196.
Pinchuk, A. & Hopcroft, R. 2007. Seasonal variations in the growth rates of euphausiids (Thysanoessa inermis, T. spinifera, and Euphausia pacifica) from the northern Gulf of Alaska. Marine Biology, 151, 10.1007/s00227-006-0483-1.
Quetin, L. & Ross, R. 1991. Behavioural and physiological characteristics of the Antarctic krill, Euphausia superba. American Zoologist, 31, 4963.
Steinberg, D.K., Ruck, K.E., Gleiber, M.R., Garzio, L.M., Cope, J.S., Bernard, K.S., et al. 2015. Long-term (1993–2013) changes in microzooplankton off the Western Antarctic Peninsula. Deep-Sea Research I, 101, 5470.
Tarling, G., Shreeve, R., Hirst, G., Atkinson, A., Pond, D., Murphy, E. & Watkins, J. 2006. Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnology and Oceanography, 51, 956972.
Wallis, J., Kawaguchi, S. & Swadling, K. 2018. Sexual differentiation, gonad maturation, and reproduction of the Southern Ocean euphausiid Thysanoessa macrura (Sars, 1883) (Crustacea: Euphausiacea). Journal of Crustacean Biology, 38, 10.1093/jcbiol/rux091.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed