Skip to main content Accessibility help
×
Home

Impact of the B-15 iceberg “stranding event” on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica

  • J.-P. Remy (a1), S. Becquevort (a2), T.G. Haskell (a3) and J.-L. Tison (a1)

Abstract

Ice cores were sampled at four stations in McMurdo Sound (Ross Sea) between 1999 and 2003. At the beginning of year 2000, a very large iceberg (B-15) detached itself from the Ross Ice Shelf and stranded at the entrance of the Sound, preventing the usual oceanic circulation purging of the annual sea ice cover from this area. Ice textural studies showed that a second year sea ice cover was built-up at three out of the four stations: ice thickness increased to about 3 m. Repeated alternation of columnar and platelet ice appeared, and bulk salinity showed a strong decrease, principally in the upper part of the ice sheet, with associated brine volume decrease. Physical modification influenced the biology as well. By decreasing the light and space available for organisms in the sea ice cover, the stranding of B-15 has i) hampered autotrophic productivity, with chlorophyll a concentration and algae biomass significantly lower for second year ice stations, and ii) affected trophic relationships such as the bacterial biomass/chl a concentration correlation, or the autotrophic to heterotrophic ratio.

Copyright

Corresponding author

References

Hide All
Archer, S.D., Leakey, R.J.G., Burkill, P.H., Sleigh, M.A. & Appleby, C.J. 1996. Microbial ecology of sea ice at a coastal Antarctic site: community composition, biomass and temporal change. Marine Ecology Progress Series, 135, 179195.
Arrigo, K.R., Kremer, J.N. & Sullivan, C.W. 1993. A simulated Antarctic fast-ice ecosystem. Journal of Geophysical Research, 98, 69296946.
Arrigo, K.R., Dieckmann, G., Gosselin, M., Robinson, D.H., Fritsen, C.H. & Sullivan, C.W. 1995. High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica - biomass, nutrient and production profiles within a dense microalgal bloom. Marine Ecology Progress Series, 127, 255268.
Arrigo, K.R., van Dijken, G.L., Ainley, D.G., Fahnestock, M.A. & Markus, T. 2002. Ecological impact of a large Antarctic iceberg. Geophysical Research Letters, 29, 10.1029/2001GL014160.
Assmann, K., Hellmer, H.H.& Beckmann, A. 2003. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarctic Science, 15, 311.
Backstrom, L.G.E.& Eicken, H. 2006. Capacitance probe measurements of brine volume and bulk salinity in first year sea ice. Cold Regions Science and Technology, 46, 167180.
Barry, J.P. 1988. Hydrographic patterns in McMurdo Sound, Antarctica and their relationship to local benthic communities. Polar Biology, 8, 377391.
Barry, J.P. & Dayton, P.K. 1988. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biology, 8, 367376.
Becquevort, S. & Smith, W.O. Jr 2001. Aggregation, sedimentation and biodegradability of phytoplankton-derived material during spring in the Ross Sea, Antarctica. Deep-Sea Research II, 48, 41554178.
Buckley, R.G. & Trodahl, H.J. 1987. Thermally driven changes in the optical properties of sea ice. Cold Region Science and Technology, 14(2), 201204.
Bunt, J.S. 1963. Diatoms of Antarctica sea-ice as agents of primary production. Nature, 199, 12541257.
Bunt, J.S. 1968. Some characteristics of microalgae isolated from Antarctic sea-ice. Antarctic Research Series, 11, 114.
Bunt, J.S. & Lee, C.C. 1969. Observations within and beneath Antarctic sea ice in McMurdo Sound and the Weddell Sea, methods and data. Institute of Marine Science Technical Report, 69-1, 32 pp.
Bunt, J.S. & Lee, C.C. 1970. Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967. Journal of Marine Research, 28, 304320.
Cota, G.F. & Sullivan, C.W. 1990. Photoadaptation, growth and production of bottom ice algae in the Antarctic. Journal of Phycology, 26, 399411.
Cottier, F.R., Eicken, H. & Wadhams, P. 1999. Linkages between salinity and brine channel distribution in young sea ice. Journal of Geophysical Research, 104, 1585915871.
Cox, G.F.N. & Weeks, W.F. 1974. Salinity variations in sea ice. Journal of Glaciology, 13, 109120.
Cox, G.F.N. & Weeks, W.F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29, 306316.
Doran, P.T., Dana, G.L., Hastings, J.T. & Wharton, R.A. Jr 1995. The McMurdo LTER Automatic Weather Network (LAWN). Antarctic Journal of the United States, 30(5), 276280.
Eicken, H. 1992. Salinity profiles of Antarctic sea ice: field data and model results. Journal of Geophysical Research, 97, 1554515557.
Eicken, H. 2003. From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 2281.
Garrison, D.L. & Buck, K.R. 1986. Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biology, 6, 237239.
Geider, R.J., MacIntyre, H.L. & Kana, T.M. 1998. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient limitation and temperature. Limnology and Oceanography, 43, 679694.
Golden, K.M., Ackley, S.F. & Lytle, V.I. 1998. The percolation phase transition in sea ice. Science, 282, 22382241.
Gow, A.J., Ackley, S.F., Govoni, J.W. & Weeks, W.F. 1998. Physical and structural properties of land-fast sea ice in McMurdo Sound, Antarctica. Antarctic Research Series, 74, 355374.
Grossi, S.M., Kottmeier, S.T., Moe, R.L., Taylor, G.T. & Sullivan, C.W. 1987. Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Marine Ecology Progress Series, 35, 153164.
Günther, S. & Dieckmann, G.S. 1999. Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. Antarctic Science, 11, 305315.
Harrison, P.J., Waters, R.E. & Taylor, F.J.R. 1980. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. Journal of Phycology, 16, 2835.
Heine, A.J. 1963. Ice breakout around the southern end of Ross Island, Antarctica. New Zealand Journal of Geology and Geophysics, 6, 395402.
Hillebrand, H., Dürselen, C.-D. & Kirschtel, D. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403424.
Horner, R.A. & Schrader, G.C. 1982. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic, 35, 485503.
Horner, R.A., Syversten, E.E., Thomas, D.P. & Lange, C. 1988. Proposed terminology and reporting units for sea ice algal assemblages. Polar Biology, 8, 249253.
Horner, R., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I.A., Reeburgh, W.S., Spindler, M. & Sullivan, C.W. 1992. Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biology, 12, 417427.
Jeffries, M.O. & Weeks, W.F. 1992. Structural characteristics and development of sea ice in the western Ross Sea. Antarctic Science, 5, 6375.
Jeffries, M.O., Weeks, W.F., Shaw, R. & Morris, K. 1993. Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. Journal of Glaciology, 39, 223238.
Johnston, M. 2006. Comparing the decay of first year ice in Arctic and sub-Arctic. Annals of Glaciology, 44, 154162.
Knox, G.A. 1990. Primary production and consumption in McMurdo Sound, Antarctica. In Kerry, K.R. & Hempel, G., eds. Antarctic ecosystems: ecological change and conservation. Berlin: Springer, 175186.
Knox, G., Ling, N., Patrick, M. & Wilson, P. 2001. The state of the Ross Sea Region: marine environment. In Waterhouse, E.J., ed. Ross Sea Region 2001: A state of the Environment Report for the Ross Sea Region of Antarctica. Christchurch: New Zealand Antarctic Institute, 5.15.45.
Kovacs, A., Gow, A.J., Cragin, J.H. & Morey, R.M. 1982. The brine zone of the McMurdo Ice Shelf, Antarctica. CRREL Report, 82–39.
Krembs, C., Gradinger, R. & Spindler, M. 2000. Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. Journal of Experimental Marine Biology and Ecology, 243, 5580.
Langway, C.C. 1958. Ice fabrics and the universal stage. CRREL Technical Report, No. 62, 16 pp.
Leonard, G.H., Purdie, C.R., Langhorne, P.J., Haskell, T.G., Williams, M.J.M. & Frew, R.D. 2006. Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. Journal of Geophysical Research, 111, 10.1029/2005JC002952.
Lepparänta, M. & Manninen, T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Helsinki: Finnish Institute Marine Research Internal Report, No. 88–2, 14 pp.
Leventer, A. 2003. Particulate flux from sea ice in polar waters. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 303332.
Leventer, A., Dunbar, R.B., Allen, M.R. & Wayper, R.Y. 1987. Ice thickness in McMurdo Sound. Antarctic Journal of the United States of America, 22(5), 9496.
Leventer, A. & Dunbar, R.B. 1988. Recent diatom record of McMurdo Sound: implications for history of sea ice extent. Paleoceanography, 3, 259274.
Lewis, E.L. & Perkin, R.G. 1985. The winter oceanography of McMurdo Sound, Antarctica. Antarctic Research Series, 43, 145165.
Littlepage, J.L. 1965. Oceanographic investigations in McMurdo Sound, Antarctica. Antarctic Research Series, 5, 137.
Lorenzen, G.J. 1967. Determination of chlorophyll and phaeopigments: spectrometric equations. Limnology and Oceanography, 12, 343346.
Maykut, G.A. 1985. The ice environment. In Horner, R.A., eds. Sea ice biota. Boca Raton, FL: CRC Press, 2179.
McMinn, A. 1995. Why are there no post-Palaeogene dinoflagellate cysts in the Southern Ocean? Micropaleontology, 41, 383386.
McMinn, A., Skerratt, J., Trull, T., Ashworth, C. & Lizotte, M. 1999. Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica. Polar Biology, 21, 220227.
Menden-Deuer, S. & Lessard, E.J. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography, 45, 569579.
Mitchell, W.M. & Bye, J.A.T. 1985. Observations in the boundary layer under the sea ice in McMurdo Sound. Antarctic Research Series, 43, 167176.
Mock, T. & Kroon, B.M.A. 2002. Photosynthetic energy conversion under extreme conditions. II: The significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry, 61, 5360.
Montresor, M., Procaccini, G. & Stoecker, D.K. 1999. Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! Journal of Phycology, 35, 186197.
Montresor, M.G., Lovejoy, C., Orsini, L., Procaccini, G. & Roy, S. 2003. Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biology, 26, 186194.
Notz, D., Wettlaufer, J.S. & Worster, M.G. 2005. A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ. Journal of Glaciology, 51, 159166.
Paige, R.A. 1966. Crystallographic studies of sea ice in McMurdo Sound, Antarctica. U.S. Naval Civil Engineering Laboratory, Technical Report R494, 31 pp.
Paige, R.A. 1971. Breakout of the McMurdo Ice Shelf. U.S. Naval Civil Engineering Laboratory, Internal Report, No. 7, 24 pp.
Palmisano, A.C. & Sullivan, C.W. 1983. Sea ice microbial communities (SIMCO). I. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica in 1980. Polar Biology, 2, 171177.
Palmisano, A.C., SooHoo, J.B. & Sullivan, C.W. 1985. Photosynthetic –irradiance relationships in sea ice microalgae from McMurdo Sound, Antarctica. Journal of Phycology, 21, 341346.
Palmisano, A.C., Lizotte, M.P., Smith, G.A., Nichols, P.D., White, D.C. & Sullivan, C.W. 1988. Changes in photosynthetic carbon assimilation in Antarctic sea-ice diatoms during spring bloom: variation in synthesis of lipid classes. Journal of Experimental marine Biology and Ecology, 116, 113.
Perovich, D.K. 1996. The optical properties of sea ice. CRREL Monograph, 96-1, 25 pp.
Porter, K.G. & Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943948.
Riaux-Gobin, C., Tréguer, P., Poulin, M.&Vétion, G. 2000. Nutrients, algal biomass and communities in land-fast ice and seawater off Adélie Land (Antarctica). Antarctic Science, 12, 160171.
Robinson, M.J. 2006. An oceanographic study of the cavity beneath the McMurdo Ice Shelf, Antarctica PhD thesis, Victoria University, Wellington, 146 pp. [Unpublished].
Simon, M. & Azam, F. 1989. Protein content and protein synthesis rate of planktonic marine bacteria. Marine Ecology Progress Series, 51, 201213.
Smith, W.O. Jr & Sakshaug, E. 1990. Polar phytoplankton. In Smith, W.O. Jr, ed. Polar oceanography, Part B: chemistry, biology and geology. San Diego, CA: Academic Press, 477525.
Smith, I.J., Langhorne, P.J., Haskell, T.G., Trodaht, H.J., Frew, R. & Vennell, M.R. 2001. Platelets ice and the land-fast sea ice of McMurdo Sound, Antarctica. Annals of Glaciology, 33, 2127.
Stewart, F.J. & Fritsen, C.H. 2004. Bacteria-algae relationships in Antarctic sea ice. Antarctic Science, 16, 143156.
Stoecker, D.K., Gustafson, D.E., Merrell, J.R., Black, M.M.D. & Baier, C.T. 1997. Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. Journal of Phycology, 33, 585595.
Stoecker, D.K., Gustafson, D.E., Black, M.M.D. & Baier, C.T. 1998. Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. Journal of Phycology, 34, 6069.
Sullivan, C.W., Palmisano, A.C., Kottmeier, S. & Moe, R. 1982. Development of the sea ice microbial community in McMurdo Sound. Antarctic Journal of the United States, 17 (5), 155157
Sullivan, C.W. & Palmisano, A.C. 1984. Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica in 1980. Applied & Environmental Microbiology, 47, 788795.
Sullivan, C.W., Palmisano, A.C., Kottmeier, S., McGrath Grossi, S. & Moe, R. 1985. The influence of light on growth and development of the sea-ice microbial community of McMurdo Sound. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 7883.
Thomas, D.N. & Papadimitriou, S. 2003. Biogeochemistry of sea ice. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 267302.
Tison, J.L., Lorrain, R.D., Bouzette, A., Dini, M., Bondesan, A. & Stievenard, M. 1998. Linking land-fast sea ice variability to marine ice accretion at Hells Gate ice shelf, Ross Sea. Antarctic Research Series, 74, 375407.
Tison, J.-L., Haas, C., Gowing, M.M., Sleewaegen, S. & Bernard, A. 2002. Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. Journal of Glaciology, 48, 177191.
Tison, J.-L., Lorrain, R., Verbeke, V., Lancelot, C., Becquevort, S., Schoemann, V., Chou, L., de Jong, J., Lanuzelle, D. & Dellile, B. 2003. Biogéochimie de la glace de mer dans la perspective des changements climatiques. ARC rapport annuel, 20022003, 57 pp.
Tison, J.-L., Lorrain, R., Verbeke, V., Lancelot, C., Becquevort, S., Schoemann, V., Chou, L., de Jong, J., Lanuzelle, D., Dellile, B., Dumont, I. & Masson, F. 2006. Biogéochimie de la glace de mer dans la perspective des changements climatiques. ARC rapport annuel, 20052006, 92 pp.
Watson, S.W., Novitsky, T.J., Quinby, H.L. & Valois, F.W. 1977. Determination of bacterial number and biomass in the marine environment. Applied Environmental Microbiology, 33, 940946
Weeks, W.F. & Gow, A.J. 1978. Preferred crystal orientations in the fast ice along the margins of the Arctic Ocean. Journal of Geophysical Research, 83, 51055121.
Weeks, W.F. & Gow, A.J. 1980. Crystal alignments in the fast ice of Arctic Alaska. Journal of Geophysical Research, 85, 11371146.

Keywords

Impact of the B-15 iceberg “stranding event” on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica

  • J.-P. Remy (a1), S. Becquevort (a2), T.G. Haskell (a3) and J.-L. Tison (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed