Skip to main content Accessibility help
×
Home

Identification, characterization and expression analysis of the chalcone synthase family in the Antarctic moss Pohlia nutans

  • Xinghao Yao (a1) (a2), Tailin Wang (a1) (a3), Huijuan Wang (a1) (a2), Hongwei Liu (a1) (a2), Shenghao Liu (a4), Qingang Zhao (a1), Kaoshan Chen (a1) (a2) and Pengying Zhang (a1) (a2)...

Abstract

Mosses have adapted to the Antarctic environment and are an ideal medium for studying plant resistance to abiotic stress. Chalcone synthase is the first committed enzyme in the flavonoid metabolic pathway, which plays an indispensable role in plant resistance to adversity. In this study, six genes (Pn021, PnCHS088, Pn270, PnCHS444, PnCHS768 and Pn847) were identified in the Antarctic moss Pohlia nutans Lindberg transcriptome by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Sequence alignment and three-dimensional structure analysis revealed the conserved amino acid residues of the enzymes of the chalcone synthase family, including three catalytic residues (Cys164, His303 and Asn336) and two substrate recognition residues (Phe215 and Phe265). Phylogenetic analysis indicated that PnCHS088, PnCHS444 and PnCHS768 might be chalcone synthase but that Pn021 is more like stilbenecarboxylate synthase. These genes were located at the transition between fungi and advanced plants in the phylogenetic tree. In addition, real-time PCR analysis revealed that the expression profiles of the six P. nutans genes were influenced by diverse abiotic stresses as well as by abscisic acid and methyl jasmonate. The results presented here contribute to the study of the CHS gene family in polar mosses and further reveal the mechanisms underlying the adaptation of mosses to extreme environments.

Copyright

Corresponding author

Footnotes

Hide All

joint lead authorship

Footnotes

References

Hide All
Baharum, H., Morita, H., Tomitsuka, A., Lee, F.C., Ng, K.Y., Rahim, R.A., et al. 2011. Molecular cloning, modeling, and site-directed mutagenesis of type III polyketide synthase from Sargassum binderi (Phaeophyta). Marine Biotechnology, 13, 845856.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., et al. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252W258.
Castellarin, S.D., Matthews, M.A., Gaspero, G.D. & Gambetta, G.A. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101112.
Chen, L.J., Guo, H.M., Lin, Y. & Cheng, H.M. 2015. Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. Plant Cell Reports, 34, 885894.
Chen, S., Pan, X.H., Li, Y.T., Cui, L.J., Zhang, Y.C., Zhang, Z.M. et al. 2017. Identification and characterization of chalcone synthase gene family members in Nicotiana tabacum. Journal of Plant Growth Regulation, 36, 374384.
Choi, S., Kwon, Y.R., Hossain, M.A., Hong, S.W., Lee, B.H. & Lee, H. 2009. A mutation in ELA1, an age-dependent negative regulator of PAP1/MYB75, causes UV- and cold stress-tolerance in Arabidopsis thaliana seedlings. Plant Science, 176, 678686.
Convey, P. & Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.
Dale, T.M., Skotnicki, M.L., Adam, K.D. & Selkirk, P.M. 1999. Genetic diversity in the moss Hennediella heimii in Miers Valley, Southern Victoria Land, Antarctica. Polar Biology, 21, 228233.
Dao, T.T.H., Linthorst, H.J.M. & Verpoorte, R. 2011. Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10, 397412.
Feinbaum, R.L. & Ausubel, F.M. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology, 8, 19851992.
Gambino, G., Perrone, I. & Gribaudo, I. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19, 520525.
Goiris, K., Muylaert, K., Voorspoels, S., Noten, B., Paepe, D.D., Baart, G.J.E. & Cooman, L.D. 2014. Detection of flavonoids in microalgae from different evolutionary lineages. Journal of Phycology, 50, 483492.
Han, Y.H., Cao, Y.P., Jiang, H.Y. & Ding, T. 2017. Genome-wide dissection of the chalcone synthase gene family in Oryza sativa. Molecular Breeding, 37, 119.
Han, Y.H, Ding, T., Su, B. & Jiang, H.Y. 2016. Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. International Journal of Molecular Sciences, 17, 161.
Hrazdina, G., Zobel, A.M. & Hoch, H.C. 1987. Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proceedings of the National Academy of Sciences of the United States of America, 84, 89668970.
Jez, J.M., Bowman, M.E. & Noel, J.P. 2002. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proceedings of the National Academy of Sciences of the United States of America, 99, 53195324.
Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A. & Noel, J.P. 2000. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry, 39, 890902.
Jiang, C.G., Schommer, C.K., Kim, S.Y. & Suh, D.Y. 2006. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry, 67, 25312540.
Jiang, J.J., Shao, Y.L., Li, A.M., Lu, C.L., Zhang, Y.T. & Wang, Y.P. 2013. Phenolic composition analysis and gene expression in developing seeds of yellow- and black-seeded Brassica napus. Journal of Integrative Plant Biology, 55, 537551.
Kim, S.Y., Che, C.C., Wiedemann, G., Jepson, C., Rahimi, M., Rothwell, J.R., et al. 2013. Physcomitrella PpORS, basal to plant type III polyketide synthases in phylogenetic trees, is a very long chain 2’-oxoalkylresorcinol synthase. Journal of Biological Chemistry, 288, 27672777.
Koduri, P.K.H., Gordon, G.S., Barker, E.I., Colpitts, C.C., Ashton, N.W. & Suh, D.Y. 2010. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Molecular Biology, 72, 247263.
Landrey, L.G., Chapple, C.C.S. & Last, R.L. 1995. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology, 109, 11591166.
Leyva, A., Jarillo, J.A., Salinas, J. & Martinez-Zapater, J.M. 1995. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiology, 108, 3946.
Li, L., Aslam, M., Rabbi, F., Vanderwel, C., Ashton, N.W. & Suh, D.Y. 2018. PpORS, an ancient type III polyketide synthase, is required for integrity of leaf cuticle and resistance to dehydration in the moss, Physcomitrella patens. Planta, 247, 527541.
Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G. & Last, R.L. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 5, 171179.
Liu, S.H., Ju, J.F. & Xia, G.M. 2014. Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene, 543, 145152.
Oh, J.E., Kim, Y.H., Kim, J.H., Kwon, Y.R. & Lee, H.J. 2011. Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. Journal of the Korean Society for Applied Biological Chemistry, 54, 7988.
Roads, E., Longton, R.E. & Convey, P. 2014. Millennial timescale regeneration in a moss from Antarctica. Current Biology, 24, 222223.
Saslowsky, D. & Winkel-Shirley, B. 2001. Localization of flavonoid enzymes in Arabidopsis roots. Plant Journal, 27, 3748.
Schmelzer, E., Jahnen, W. & Hahlbrock, K. 1988. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proceedings of the National Academy of Sciences of the United States of America, 85, 29892993.
Seppelt, R.D., Green, T.G.A., Schwartz, A.M.J. & Frost, A. 1992. Extreme southern locations for moss sporophytes in Antarctica. Antarctic Science, 4, 3739.
Shvarts, M., Borochov, A. & Weiss, D. 1997. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiologia Plantarum, 99, 6772.
Skotnicki, M.L., Mackenzie, A.M., Clements, M.A. & Selkirk, P.M. 2005. DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarctic Science, 17, 377384.
Tian, L., Wan, S.B., Pan, Q.H., Zheng, Y.J. & Huang, W.D. 2008. A novel plastid localization of chalcone synthase in developing grape berry. Plant Science, 175, 431436.
Wang, S.S., Xie, X.D., Zhang, L., Lin, F.C., Luo, Z.P., Li, F., et al. 2017. Comparative analysis of chalcone synthase gene family among Nicotiana tabacum L. and its diploid progenitors. Tobacco Science & Technology, 13, 114.
Xu, W.J., Dubos, C. & Lepiniec, L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 20, 176185.
Zhang, J.Z. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18, 292298.
Zhang, X.B., Abrahan, C., Colquhoun, T.A., Liu, C.J. 2017. A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell, 29, 11571174.
Zhang, Y.M., Muyrers, J.P., Testa, G. & Stewart, A.F. 2000. DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 18, 13141317.
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247273.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Yao et al. supplementary material
Yao et al. supplementary material 1

 PDF (13 KB)
13 KB

Identification, characterization and expression analysis of the chalcone synthase family in the Antarctic moss Pohlia nutans

  • Xinghao Yao (a1) (a2), Tailin Wang (a1) (a3), Huijuan Wang (a1) (a2), Hongwei Liu (a1) (a2), Shenghao Liu (a4), Qingang Zhao (a1), Kaoshan Chen (a1) (a2) and Pengying Zhang (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.